Skip to main content

Advertisement

Log in

Influence Mechanism of Pressure on Nitrogen Bubble Formation During Solidification Process in 30Cr15Mo1N Ingot

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this paper, the influence mechanism of pressure on nitrogen bubble formation during solidification process in 30Cr15Mo1N ingot was investigated by experimental and calculation methods. The effects of pressure on the critical nucleation radius and the growth rate of nitrogen bubbles were investigated. The growth of nitrogen bubbles was closely associated with the direction of solidification. In addition, nitrogen bubbles were generally egg-shaped and spherical in the columnar and equiaxed regions, respectively. With increasing pressure from 0.3 to 0.5 MPa, an increment existed in the critical nucleation radius and a decrement in the growth rate of nitrogen bubbles, mainly caused by the increment of the Gibbs free energy change of the system for nucleation and the internal pressure in the nitrogen bubbles, respectively. It led to decrements in number and mean area of nitrogen bubbles in 30Cr15Mo1N ingots with increasing pressure from 0.3 to 0.5 MPa. Based on the effect of pressure on formation of nitrogen bubbles, a special fitting formula was proposed to obtain the critical pressure for the 30Cr15Mo1N cylindrical ingot without nitrogen bubbles: \(P_{{\text{c}}} = {\text{max}}\left\{ {0.8867[{\text{pct\;N}}]_{0} + 0.098,0.053e^{{[{\text{pct\; N}}]_{0} /0.212}} + 0.0415} \right\},\) which is applicable under low pressure (≤ 2 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z.Y. He, H.B. Li, Z.W. Ni, H.C. Zhu, Z.H. Jiang, H. Feng, and D.S. Mao: Steel Res. Int., 2021, vol. 92, p. 2100197.

    Article  CAS  Google Scholar 

  2. W. Trojahn, E. Streit, H.A. Chin, and D. Ehlert: Materialwiss. Werkstofftech., 1999, vol. 30, pp. 605–11.

    Article  CAS  Google Scholar 

  3. M.B. Horovitz, F.B. Neto, A. Garbogini, and A.P. Tcshiptschin: ISIJ Int., 1996, vol. 36, pp. 840–45.

    Article  CAS  Google Scholar 

  4. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros Sci., 2018, vol. 144, pp. 288–300.

    Article  CAS  Google Scholar 

  5. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  6. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, S.C. Zhang, G.H. Liu, J.H. Zhu, P.B. Wang, B.B. Zhang, and G.W. Fan: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2493–2503.

    Article  Google Scholar 

  7. Y.H. Park, J.W. Kim, S.K. Kim, Y.D. Lee, and Z.H. Lee: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 313–20.

    Article  CAS  Google Scholar 

  8. Y. Han, H.B. Li, H. Feng, K.M. Li, Y.Z. Tian, and Z.H. Jiang: J. Mater. Sci. Technol. (Shenyang, China)., 2021, vol. 65, pp. 210–15.

    Article  CAS  Google Scholar 

  9. Y. Han, H.B. Li, H. Feng, Y.Z. Tian, Z.H. Jiang, and T. He: Mater. Sci. Eng. A., 2021, vol. 814, p. 141235.

    Article  CAS  Google Scholar 

  10. A. Mitchell and H. Frederiksson: J. Mater. Sci., 2004, vol. 39, pp. 7275–83.

    Article  CAS  Google Scholar 

  11. Y.H. Park and Z.H. Lee: Mater. Sci. Eng. A., 2001, vol. 297, pp. 78–84.

    Article  Google Scholar 

  12. M.B. Cortie and J.H. Potgieter: Metall. Trans. A., 1991, vol. 22, pp. 2173–79.

    Article  Google Scholar 

  13. K.J. Dai, B. Wang, F. Xue, S.S. Liu, J.K. Huang, and J.Y. Zhang: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 2011–21.

    Article  Google Scholar 

  14. K.W. Li, J.H. Liu, J. Zhang, and S.B. Shen: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2136–46.

    Article  Google Scholar 

  15. Z. Yu, O. Hemminger, and L.S. Fan: Chem. Eng. Sci., 2007, vol. 62, pp. 7172–83.

    Article  CAS  Google Scholar 

  16. R.C. Atwood and P.D. Lee: Acta Mater., 2003, vol. 51, pp. 5447–66.

    Article  CAS  Google Scholar 

  17. A.V. Catalina, S. Sen, D.M. Stefanescu, and W.F. Kaukler: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 1525–38.

    Article  CAS  Google Scholar 

  18. Z.H. Jiang, H.B. Li, Z.P. Chen, Z.Z. Huang, D.L. Zou, and L.K. Liang: Steel Res. Int., 2005, vol. 76, pp. 740–45.

    Article  CAS  Google Scholar 

  19. Y. Kobayashi, H. Todoroki, N. Shiga, and T. Ishii: ISIJ. Int., 2012, vol. 9, pp. 1601–06.

    Article  Google Scholar 

  20. K.F. Kelton and A.L. Greer: Nucleation in Condensed Matter: Applications in Materials And Biology, Elsevier, Oxford, 2010.

    Google Scholar 

  21. R.P. Sear: J. Phys. Condens. Matter., 2007, vol. 19, p. 033101.

    Article  Google Scholar 

  22. R.P. Sear: CrystEngComm., 2014, vol. 16, pp. 6506–22.

    Article  CAS  Google Scholar 

  23. H.R. Pruppacher and J.D. Klett: Microphysics of Clouds and Precipitation: Reprinted 1980, Springer, New York, 2012.

    Google Scholar 

  24. H. Shim, Y. Jeon, J. Yeo, and G. Lee: New J. Phys., 2015, vol. 17, p. 063026.

    Article  Google Scholar 

  25. X.Y. Liu: J. Chem. Phys., 2000, vol. 112, pp. 9949–55.

    Article  CAS  Google Scholar 

  26. D.W. Oxtoby: J. Phys.: Condens. Matter., 1992, vol. 4, pp. 7627–50.

    Google Scholar 

  27. P.G. Debenedetti: Metastable Liquids, Princeton University Press, Princeton, 2021.

    Google Scholar 

  28. P. Wei and S.Y. Hsiao: Int. J. Heat Mass Transf., 2012, vol. 55, pp. 8129–38.

    Article  Google Scholar 

  29. P. Kapranos, C. Carney, A. Pola, and M. Jolly: Casting, Semi-solid Forming and Hot Metal Forming, Comprehensive Materials Processing, Elsevier, Amsterdam, 2014, pp. 39–67.

  30. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, Z.H. Jiang, and T. He: ISIJ Int., 2021, vol. 61(6), p. 1889. https://doi.org/10.2355/isijinternational.ISIJINT-2021-010.

    Article  CAS  Google Scholar 

  31. A.P. Mouritz: Introduction to Aerospace Materials, Elsevier, Oxford, 2012.

    Book  Google Scholar 

  32. S. Louhenkilpi: Continuous Casting of Steel, Treatise on Process Metallurgy, Elsevier, Oxford, 2014.

    Google Scholar 

  33. E.J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935–49.

    Article  CAS  Google Scholar 

  34. H.C. Zhu, Z.H. Jiang, H.B. Li, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, and G.H. Liu: Steel Res. Int., 2017, vol. 88, p. 1600509.

    Article  Google Scholar 

  35. Z.H. Jiang, H.C. Zhu, H.B. Li, G.H. Liu, P.B. Wang, J.H. Zhu, S.C. Zhang, and H. Feng: ISIJ Int., 2018, vol. 58, pp. 107–13.

    Article  CAS  Google Scholar 

  36. Z.X. Cui and B.X. Liu: Metallurgy and Heat Treatment Theory, Harbin Institute of Technology Press, Harbin, 1998.

    Google Scholar 

  37. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, and Z.H. Jiang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1–17.

    Google Scholar 

  38. J.A. Sekhar, G.J. Abbaschian, and R. Mehrabian: Mater. Sci. Eng., 1979, vol. 40, pp. 105–10.

    Article  CAS  Google Scholar 

  39. A.F. Ilkhchy, M. Jabbari, and P. Davami: Int. Commun. Heat Mass Transf., 2012, vol. 39, pp. 705–12.

    Article  Google Scholar 

  40. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, and Z.H. Jiang: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 3235–45.

    Article  Google Scholar 

Download references

Acknowledgments

The present research was financially supported by National Natural Science Foundation of China (nos. U1960203, 51904065 and 51774074), Talent Project of Revitalizing Liaoning (XLYC1902046), China National Postdoctoral Program for Innovative Talents (grant no. BX20200076) and Elite Program of Southern Taihu Lake. Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HB., He, ZY., Zhu, HC. et al. Influence Mechanism of Pressure on Nitrogen Bubble Formation During Solidification Process in 30Cr15Mo1N Ingot. Metall Mater Trans B 53, 1721–1732 (2022). https://doi.org/10.1007/s11663-022-02482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02482-w

Navigation