Skip to main content
Log in

Determination of Density and Surface Tension of CaO–SiO2–Al2O3 Molten Slag by Pendant Drop Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Surface tension is an important physical property of molten metallurgical slag. In recent years, the determination of slag surface tension by pendant drop method has received increasing attention, but the corresponding density data are required during its calculation. For this reason, researchers have to use the density data from literature or other experiments, which limits the application of the pendant drop method. In this work, a novel ring-shaped pendant drop forming device was made of PtIr alloy. A 40 pct CaO–40 pct SiO2–20 pct Al2O3 (mass percentages) slag was taken as an example, the density and surface tension data of the slag at high temperatures were tried to obtain in one experiment by the pendant drop method under different atmospheres including high-purity argon, air, and purified argon. In the temperature range of 1450 °C to 1650 °C, the measurement results are comparable with literature data of the slags with the same or similar compositions, which confirms that it is feasible to obtain the slag density and surface tension in one experiment by the pendant drop method based on the pendant drop forming device. The measured density of the molten slag slightly decreases with an increase in temperature, while the surface tension slightly increases; the temperature coefficients of both the density and the surface tension are relatively small. In addition, it is found that the obtained density values under the three atmospheres are highly consistent at the same temperature, and the surface tension values under high-purity argon and purified argon are also relatively consistent; however, the surface tension value under air is slightly larger than that under argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available from the authors on reasonable request.

References

  1. R.E. Boni and G. Derge: Trans. Met. Soc. AIME, 1956, vol. 206, pp. 53–59.

    Google Scholar 

  2. S. Riaz, K.C. Mills, and K. Bain: Ironmak. Steelmak., 2002, vol. 29, pp. 107–13.

    Article  CAS  Google Scholar 

  3. M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills, D. Neuschütz, R. Parra, C. Saint-Jours, P.J. Spencer, M. Susa, M. Tmar, and E. Woermann: Slag Atlas, 2nd ed. Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 403–32.

    Google Scholar 

  4. R. Zhang, Z. Wang, Y.F. Meng, S.Y. Jiao, J.X. Jia, Y. Min, and C.J. Liu: Chem. Eng. Sci., 2021, vol. 245, p. 116870.

    Article  CAS  Google Scholar 

  5. E. Cheremisina, Z. Zhang, E. Bilbao, and J. Schenk: Ceram. Int., 2022, https://doi.org/10.1016/j.ceramint.2022.09.332.

    Article  Google Scholar 

  6. C.Z. Wang: Research Approaches for Physical Chemistry of Metallurgy, 4th ed. Metallurgical Industry Press, Beijing, 2013, pp. 335–66.

    Google Scholar 

  7. J.F. Fan, Z.F. Yuan, and J.J. Ke: Chem. Bull., 2004, vol. 11, pp. 802–07.

    Google Scholar 

  8. Z.M. Yan, X.W. Lv, Z.D. Pang, X.M. Lv, and C.G. Bai: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1322–30.

    Article  Google Scholar 

  9. P. Vadász, M. Havlík, and V. Daněk: Can. Metall. Q., 2000, vol. 39, pp. 143–52.

    Article  Google Scholar 

  10. M. Askari and A.M. Cameron: Can. Metall. Q., 1991, vol. 30, pp. 207–12.

    Article  CAS  Google Scholar 

  11. K. Gunji and T. Dan: Trans. ISIJ, 1974, vol. 14, pp. 162–69.

    Article  CAS  Google Scholar 

  12. K. Ogino, T. Suetaki, R. Tsukuda, and A. Adachi: Tetsu-to-Hagane, 1966, vol. 52, pp. 1427–29.

    Article  Google Scholar 

  13. J.F. Xu, J.Y. Zhang, D. Chen, M.Q. Sheng, and W.P. Wang: J. Cent. South Univ., 2016, vol. 23, pp. 3079–84.

    Article  CAS  Google Scholar 

  14. Y. Kojima: Trans. ISIJ, 1971, vol. 11, pp. 349–54.

    Article  CAS  Google Scholar 

  15. T. Takayanagi, M. Kato, and S. Minowa: J. Jpn. Foundrymen’s Soc., 1976, vol. 48, pp. 779–83.

    CAS  Google Scholar 

  16. J.K. Davis and F.E. Bartell: Anal. Chem., 1948, vol. 20, pp. 1182–85.

    Article  CAS  Google Scholar 

  17. W.D. Kingery: J. Am. Ceram. Soc., 1959, vol. 42, pp. 6–10.

    Article  CAS  Google Scholar 

  18. K. Mukai and T. Ishikawa: J. Jpn Inst. Met., 1981, vol. 45, pp. 147–54.

    Article  CAS  Google Scholar 

  19. J.M. Lihrmann and J.S. Haggerty: J. Am. Ceram. Soc., 1985, vol. 68, pp. 81–85.

    Article  CAS  Google Scholar 

  20. Y.Y. Chang, M.Y. Wu, Y.L. Hung, and S.Y. Lin: Rev. Sci. Instrum., 2011, vol. 82, pp. 1–9.

    Google Scholar 

  21. S.M.I. Saad, Z. Policova, and A.W. Neumann: Colloids Surf. A, 2011, vol. 384, pp. 442–52.

    Article  CAS  Google Scholar 

  22. M. Wegener, L. Muhmood, S. Sun, and A.V. Deev: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 16444–56.

    Article  CAS  Google Scholar 

  23. M. Wegener, L. Muhmood, S. Sun, and A.V. Deev: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 316–27.

    Article  Google Scholar 

  24. J. Paras, O. Takeda, M. Wu, and A. Allanore: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 2077–87.

    Article  Google Scholar 

  25. M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills, D. Neuschütz, R. Parra, C. Saint-Jours, P.J. Spencer, M. Susa, M. Tmar, and E. Woermann: Slag Atlas, 2nd ed. Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 313–48.

    Google Scholar 

  26. Q. Zhu and X.F. Wang: Bull. Chin. Ceram. Soc., 2013, vol. 32, pp. 1087–91.

    CAS  Google Scholar 

  27. S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, and K. Nakashima: ISIJ Int., 2011, vol. 51, pp. 1285–89.

    Article  CAS  Google Scholar 

  28. J.Y. Choi and H.G. Lee: ISIJ Int., 2002, vol. 42, pp. 221–28.

    Article  CAS  Google Scholar 

  29. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 38–43.

    Article  CAS  Google Scholar 

  30. J.T. Xin, N. Wang, M. Chen, and L. Gan: ISIJ Int., 2019, vol. 59, pp. 759–67.

    Article  CAS  Google Scholar 

  31. K.C. Mills, L. Yuan, and R.T. Jones: J. S. Afr. Inst. Min. Metall., 2011, vol. 111, pp. 649–58.

    CAS  Google Scholar 

  32. Y.M. Gao, H.C. Zhang, Q. Wang, and G.Q. Li: Ceram. Int., 2022, vol. 48, pp. 9753–64.

    Article  CAS  Google Scholar 

  33. Y.G. Lao, G.Q. Li, Y.M. Gao, and C. Yuan: Ceram. Int., 2022, vol. 48, pp. 14799–14812.

    Article  CAS  Google Scholar 

  34. F.K. Hansen and G. Rodsrud: J. Colloid Interface Sci., 1991, vol. 141, pp. 1–9.

    Article  CAS  Google Scholar 

  35. J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, and R.F. Tabor: J. Colloid Interface Sci., 2015, vol. 454, pp. 226–37.

    Article  CAS  Google Scholar 

  36. Q.Z. Li, N.H. Liu, and D.L. Huang: Meas. Technol., 2001, vol. 4, p. 5.

    Google Scholar 

  37. R.T. Wimber: J. Appl. Phys., 1976, vol. 47, p. 5115.

    Article  CAS  Google Scholar 

  38. C.B. Alcock: Platin. Met. Rev., 1961, vol. 5, pp. 134–39.

    Google Scholar 

  39. R.T. Wimber and H.G. Kraus: Metall. Trans., 1974, vol. 5, pp. 1565–71.

    Article  CAS  Google Scholar 

  40. R.T. Wimber, S.W. Hills, N.K. Wahl, and C.R. Tempero: Metall. Trans. A, 1977, vol. 8, pp. 193–99.

    Article  Google Scholar 

  41. E.H.P. Cordfunke and G. Meyer: Recueil, 1962, vol. 81, pp. 495–504.

    Article  CAS  Google Scholar 

  42. Y.Y. Liu: Volatilization Characteristic and Crystallization Property for CaO–Al2O3–based Mold Powder, Master's Dissertation, Northeastern University, 2016.

  43. G. Parry and O. Ostrovski: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 681–89.

    Article  CAS  Google Scholar 

  44. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima: ISIJ Int., 2015, vol. 55, pp. 1299–1304.

    Article  CAS  Google Scholar 

  45. X.H. Huang: Principle of Iron and Steel Metallurgy, 4th ed. Metallurgical Industry Press, Beijing, 2013, p. 316.

    Google Scholar 

  46. P. Courtial and D.B. Dingwell: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3685–95.

    Article  CAS  Google Scholar 

  47. Y. Li, Z.H. Jiang, M. Li, and T.P. Chen: in Proceedings of 2011 AASRI Conference on Artificial Intelligence and Industry Application, AASRI-AIIA 2011 V4, Maldives, 2011, pp. 130–33.

  48. K. Ono, K. Gunji, and T. Araki: J. Jpn. Inst. Met., 1969, vol. 33, pp. 299–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 52274305).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunming Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gao, Y., Wang, Q. et al. Determination of Density and Surface Tension of CaO–SiO2–Al2O3 Molten Slag by Pendant Drop Method. Metall Mater Trans B 54, 1499–1510 (2023). https://doi.org/10.1007/s11663-023-02776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02776-7

Navigation