Skip to main content
Log in

Designing Structure–Thermodynamics-Informed Artificial Neural Networks for Surface Tension Prediction of Multi-component Molten Slags

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The surface tension, as a crucial property of molten slags, affects a broad range of high-temperature industrial processes. In this study, we developed a structure–thermodynamics-informed artificial neural network (STIANN) to predict the surface tension of molten slags over a broad range of composition and temperature. First, we constructed a brand-new database that included not only conventional laboratory-based variable information but also quantitative structural and thermodynamic features at different scales, including second-nearest-neighbor bonds, oxygen species, degree of depolymerization (NBO/T), oxide activities, and Gibbs free energies. Then, the four-layer feed-forward backpropagation artificial neural networks were carefully designed to build the surface tension models. Next, three models were built using the different configurations of training features. The analysis results of structural information indicate the high concentration of bridging oxygen generally contributes to the low surface tension when non-bridging oxygen and free oxygen do the opposite. Statistically, the surface tension is positively correlated with the NBO/T of system. The thermodynamic features of \({\Delta }_{\text{mix}}{G}_{\text{m}}^{\text{re}}\) and \({\Delta }_{\text{mix}}{G}_{\text{m}}^{\text{E}}\) vary in the range of 0 to − 70 and 0 to − 55 kJ/mol, respectively, and both decrease first and then increase with the increase in NBO/T. The STIANN model integrated with both structural and thermodynamic information exhibits an unprecedented and excellent predictive performance. The analysis of feature importance confirms the prominent contribution of structural and thermodynamic features to the STIANN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Li, M. Zhang, Z. Wang, and S. Seetharaman: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1307–15.

    Article  CAS  Google Scholar 

  2. Z. Zhang, L. Teng, and W. Li: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 319–26.

    Article  CAS  Google Scholar 

  3. D. Zhao, Z. Zhang, L. Liu, and X. Wang: Metall. Mater. Trans. B., 2014, vol. 46B, pp. 993–1001.

    Google Scholar 

  4. D. Shi, D. Li, and G. Gao: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 46–55.

    Article  CAS  Google Scholar 

  5. H. Liu, H. Lu, D. Chen, H. Wang, H. Xu, and R. Zhang: Ceram. Int., 2009, vol. 35, pp. 3181–84.

    Article  CAS  Google Scholar 

  6. X. Miao, Z. Bai, G. Qiu, S. Tang, M. Guo, F. Cheng, and M. Zhang: J. Eur. Ceram. Soc., 2020, vol. 40, pp. 3249–61.

    Article  CAS  Google Scholar 

  7. Y. Sun, H. Shen, H. Wang, X. Wang, and Z. Zhang: Energy., 2014, vol. 76, pp. 761–67.

    Article  CAS  Google Scholar 

  8. H. Zhang, L. Fu, J. Qi, and W. Xuan: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1852–61.

    Article  Google Scholar 

  9. Y.N. Starodubtsev and V.S. Tsepelev: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1886–90.

    Article  Google Scholar 

  10. J. Xin, N. Wang, and M. Chen: ISIJ Int., 2020, vol. 60, pp. 2306–15.

    Article  CAS  Google Scholar 

  11. R.E. Boni and G. Derge: JOM., 1956, vol. 8, pp. 53–59.

    Article  CAS  Google Scholar 

  12. J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn: J. Non-Cryst. Solids., 2016, vol. 432, pp. 218–26.

    Article  CAS  Google Scholar 

  13. T. Tanaka and S. Hara: Steel Res., 2001, vol. 72, pp. 439–45.

    Article  CAS  Google Scholar 

  14. J. Xu, D. Chen, W. Weng, M. Sheng, J. Zhang, and F. Lü: J. Cent. South Univ., 2017, vol. 48, pp. 1413–19.

    Google Scholar 

  15. R. Zhang, Z. Wang, Y. Meng, S. Jiao, J. Jia, Y. Min, and C. Liu: Chem. Eng. Sci., 2021, vol. 245, art. no. 116870.

    Article  CAS  Google Scholar 

  16. M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ Int., 2007, vol. 47, pp. 935–39.

    Article  CAS  Google Scholar 

  17. M.P. Deosarkar and V.S. Sathe: Powder Technol., 2012, vol. 219, pp. 264–70.

    Article  CAS  Google Scholar 

  18. H.R. Ansari, M.J. Zarei, S. Sabbaghi, and P. Keshavarz: Int. Commun. Heat Mass Transfer., 2018, vol. 91, pp. 158–64.

    Article  CAS  Google Scholar 

  19. M. Hemmat Esfe, S. Saedodin, N. Sina, M. Afrand, and S. Rostami: Int. Commun. Heat Mass Transfer., 2015, vol. 68, pp. 50–57.

    Article  CAS  Google Scholar 

  20. B. Peng, X. Tang, L. Gou, Y. Hu, M. Guo, and M. Zhang: J. Univ. Sci. Technol. Beijing., 2014, vol. 36, pp. 1335–40.

    CAS  Google Scholar 

  21. Z. Qiao, L. Yan, Z. Cao, and Y. Xie: J. Alloys Compd., 2001, vol. 325, pp. 180–89.

    Article  CAS  Google Scholar 

  22. S.P. Pigarev, L.B. Tsymbulov, E.N. Selivanov, V.M. Chumarev, and S.A. Krasikov: Russ. Metall., 2012, vol. 11, pp. 919–23.

    Article  Google Scholar 

  23. M. Sajid, C. Bai, M. Aamir, Z. You, Z. Yan, and X. Lv: ISIJ Int., 2019, vol. 59, pp. 1153–66.

    Article  CAS  Google Scholar 

  24. Y. Min, S. Jiao, R. Zhang, J. Jia, J. Qi, and C. Liu: ISIJ Int., 2021, vol. 61, pp. 1022–28.

    Article  CAS  Google Scholar 

  25. G. Kaptay: Langmuir., 2019, vol. 35, pp. 10987–92.

    Article  CAS  Google Scholar 

  26. G. Lu, M. He, and Z. Kang: Fluid Phase Equilib., 2016, vol. 427, pp. 345–52.

    Article  CAS  Google Scholar 

  27. J. Leitner and D. Sedmidubský: Appl. Surf. Sci., 2020, vol. 525, art. no. 146498.

    Article  CAS  Google Scholar 

  28. C. Bermúdez-Salguero and J. Gracia-Fadrique: Fluid Phase Equilib., 2014, vol. 375, pp. 367–72.

    Article  Google Scholar 

  29. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 1355–60.

    Article  CAS  Google Scholar 

  30. J.D. Olden and D.A. Jackson: Ecol. Model., 2002, vol. 154, pp. 135–50.

    Article  Google Scholar 

  31. J.D. Olden, M.K. Joy, and R.G. Death: Ecol. Model., 2004, vol. 178, pp. 389–97.

    Article  Google Scholar 

  32. C. Wang, K.-C. Chou, and Z.-G. Yu: J. Solution Chem., 2020, vol. 49, pp. 863–74.

    Article  Google Scholar 

  33. T. Matsushita, I. Belov, D. Siafakas, A.E.W. Jarfors, and M. Watanabe: J. Mater. Sci., 2021, vol. 56, pp. 7811–22.

    Article  CAS  Google Scholar 

  34. T. Gancarz, Z. Moser, W. Gąsior, J. Pstruś, and H. Henein: Int. J. Thermophys., 2011, vol. 32, pp. 1210–33.

    Article  CAS  Google Scholar 

  35. M. Wegener, L. Muhmood, S. Sun, and A.V. Deev: Metall. Mater. Trans. B., 2014, vol. 46B, pp. 316–27.

    Google Scholar 

  36. R. Jiang and L. Zhang: Chem., 2016, vol. 79, pp. 792–97.

    Google Scholar 

  37. German Association of Steel Engineers: Slag Atlas, Metallurgical Industry Press, Beijing, 1989, pp. 301–40.

    Google Scholar 

  38. R. Diao: Acta Metall. Sin., 1995, vol. 31, pp. 247–50.

    Google Scholar 

  39. F. Aoliveira, A. Miller, and J. Madias: Rev. Metal., 1999, vol. 35, pp. 91–99.

    Article  Google Scholar 

  40. J. Xu, J. Zhang, T. Zeng, J. Li, and K. Chou: International Conference on Molten Slags, 2012.

  41. L. Zhang, Z. Li, H. Wang, Z. Liao, and J. Li: J. Anhui Univ. Technol., 2015, vol. 32, pp. 12–15.

    Google Scholar 

  42. Z. Yan, X. Lv, Z. Pang, X. Lv, and C. Bai: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1322–30.

    Article  Google Scholar 

  43. K. Ogino, T. Suetaki, R. Tsukuda, and A. Adachi: Tetsu to Hagane., 1966, vol. 52, pp. 1427–29.

    Article  Google Scholar 

  44. T. Koshida, T. Ogasawara, and H. Kishidaka: Tetsu to Hagane., 1981, vol. 67, pp. 1491–97.

    Article  CAS  Google Scholar 

  45. A. Staronka and M. Piekarska: Arch. Hutn., 1978, vol. 23, pp. 119–23.

    CAS  Google Scholar 

  46. Y. Liu, X. Lv, C. Bai, and B. Yu: ISIJ Int., 2014, vol. 54, pp. 2154–61.

    Article  CAS  Google Scholar 

  47. J. Xu, J. Zhang, D. Chen, M. Sheng, and W. Weng: J. Cent. South Univ., 2017, vol. 23, pp. 3079–84.

    Article  Google Scholar 

  48. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima: ISIJ Int., 2015, vol. 55, pp. 1299–304.

    Article  CAS  Google Scholar 

  49. T. Tanaka, T. Kitamura, and I.A. Back: ISIJ Int., 1998, vol. 46, pp. 400–06.

    Article  Google Scholar 

  50. I.A. Magidson, A.V. Basov, and N.A. Smirnov: Russ. Metall., 2010, vol. 2009, pp. 631–35.

    Article  Google Scholar 

  51. Z. Chen, H. Wang, Y. Sun, L. Liu, and X. Wang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2930–41.

    Article  Google Scholar 

  52. M. Suzuki and E. Jak: ISIJ Int., 2014, vol. 54, pp. 2134–43.

    Article  CAS  Google Scholar 

  53. Y. Sun, H. Wang, and Z. Zhang: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 677–87.

    Article  Google Scholar 

  54. Z. Chen, H. Wang, R. Ji, L. Liu, C. Cheeseman, and X. Wang: Ceram. Int., 2019, vol. 45, pp. 15057–64.

    Article  CAS  Google Scholar 

  55. Z. Chen, M. Wang, Z. Meng, H. Wang, L. Liu, and X. Wang: Ceram. Int., 2021, vol. 47, pp. 30691–701.

    Article  CAS  Google Scholar 

  56. Z. Chen, M. Wang, H. Wang, L. Liu, and X. Wang: Constr. Build. Mater., 2022, vol. 319, art. no. 126010.

    Article  CAS  Google Scholar 

  57. Z. Chen, H. Wang, M. Wang, L. Liu, and X. Wang: J. Clean. Prod., 2022, vol. 339, art. no. 130548.

    Article  CAS  Google Scholar 

  58. C.B. Shi, X.M. Yang, J.S. Jiao, C. Ll, and H.J. Guo: ISIJ Int., 2010, vol. 50, pp. 1362–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Key Research and Development Plan of China (2018YFC1901503 and 2018YFC1901505), Shanxi Unveiling Bidding Project (20191101007), Ministry of Land and Resources Public Welfare Industry Research Project (201511062-02), and National Natural Science Foundation of China (51672006).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xidong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11663_2022_2479_MOESM1_ESM.pdf

Supplementary file1 The model database containing structural and thermodynamic information are available in Supplementary material. Twenty-three second-nearest-neighbor bonds with great relevance to the surface tension were screened and finally selected, which process is described in detail in Supplementary material. The weight and bias values of the ANN, SIANN, STIANN models are also available in Supplementary material. (PDF 1151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, M., Wang, H. et al. Designing Structure–Thermodynamics-Informed Artificial Neural Networks for Surface Tension Prediction of Multi-component Molten Slags. Metall Mater Trans B 53, 2018–2029 (2022). https://doi.org/10.1007/s11663-022-02479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02479-5

Navigation