Skip to main content
Log in

New Method and Device to Fast Measure Surface Tension of the Melt and Its Applications in Foundry

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new method for fast measuring the surface tension of the melt has been brought forward. The surface tension can be fast calculated by parameters such as the number of bubbles in the fixed time, the pressure difference in bubbles, the capillary diameter, and the temperature of the melt. According to this method, a new device has been developed to measure the surface tension of the melt in 5 seconds. Theoretical analysis has shown that the modification effect, the mold filling capacity, and the graphite shape can be forecast by the surface tension of the melt. Through numerous experiments and statistical analysis, the criteria of fast forecasting the modification effect, the mold filling capacity, and the graphite shape by the surface tension have been obtained. Depending on the criteria, these three parameters can be forecast instantly if the surface tension of the melt is measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Moradian, J. Mostaghimi: IEEE Trans. Plasma Sci., 2005, vol. 33, pp. 410–11

    Article  CAS  Google Scholar 

  2. M.J. Haye, C. Bruin: J. Chem. Phys., 1994, vol. 100, pp. 556–59

    Article  CAS  Google Scholar 

  3. L. Joonho, Y. Koji, M. Kazuki: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 241–46

    Google Scholar 

  4. R. Picha, J. Vresal, A. Kroupa: Calphad, 2004, vol. 28, pp. 141–46

    Article  CAS  Google Scholar 

  5. Z.H. Li, Y.X. Li: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2455–60

    Article  CAS  Google Scholar 

  6. T. Sakuragi: Int. J. Cast Met. Res., 2005, vol. 18, pp. 202–08

    Article  Google Scholar 

  7. M. Djurdjevic, H. Jiang, J. Sokolowski: Mater. Charact., 2001, vol. 46, pp. 31–38

    Article  CAS  Google Scholar 

  8. S. Argyropoulos, B. Closset, J. Gruzleski: Mater. Trans., JIM, 2002, vol. 44, pp. 625–28

    Google Scholar 

  9. M. Cross, K. Pericleous, T.N. Croft, D. McBride, J.A. Lawrence, A.J. Williams: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 879–85

    Article  CAS  Google Scholar 

  10. S. Sauerland, G. Lohofer, I. Egry: J. Non-Cryst. Solids, 1998, vol. 158, pp. 833–36

    Article  Google Scholar 

  11. Y.R. Tian, H.R. Glynn, E. Robert: Rev. Sci. Instrum., 1995, vol. 66, pp. 3349–54

    Article  CAS  Google Scholar 

  12. S.J. Roach, H. Henein: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 667–76

    Article  CAS  Google Scholar 

  13. B. Giulio, M. Constantine, M. Michael: Proc. R. Soc. London, Ser. A, 2003, vol. 459, pp. 2195–14

    Article  Google Scholar 

  14. V. Fainerman, R. Miller, P. Joos: Coll. Polym. Sci., 1994, vol. 272, pp. 731–39

    Article  CAS  Google Scholar 

  15. T.S. Horozov, C.D. Dushkin, K.D. Danov, L.N. Arnaudov, O.D. Velev, A. Mehreteab, G. Broze: Coll. Surf. A, 1996, vol. 113, pp. 117–26

    Article  CAS  Google Scholar 

  16. C.R. Ho, B. Cantor: J. Mater. Sci., 1995, vol. 30, pp. 1912–20

    Article  CAS  Google Scholar 

  17. H. Jiang, J.H. Sokolowski, M. Djurdjevic, W.J. Evans: AFS Trans., 2000, vol. 57, pp. 142–51

    Google Scholar 

  18. M.B. Gokhshtein, L.S. Vasileva: Met. Sci. Heat Treat., 1990, vol. 12, pp. 591–93

    Article  Google Scholar 

  19. S. Sun, L. Zhang, S. Jahanshahi: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 517–23

    Article  CAS  Google Scholar 

  20. M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 2121–34

    Article  CAS  Google Scholar 

  21. D. Apelian, M.C. Flemings, R. Mehrabian: Metall. Trans., 1974, vol. 5, pp. 2533–37

    Article  CAS  Google Scholar 

  22. A. Sundarrajan, A. Mortensen, T.Z. Kattamis, M.C. Flemings: Acta Mater., 1997, vol. 46, pp. 91–99

    Article  Google Scholar 

  23. G.B. Van Der Graaf, H.E.A. Van Den Akker, L.A. Katgerman: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 69–78

    Article  Google Scholar 

  24. W.B. Sheng, D. Li, R. Yang: Trans. Nonferrous Met. Soc. China, 2001, vol. 11, pp. 353–57

    CAS  Google Scholar 

  25. Y.C. Lam, S.C. Joshi, X.L. Liu: Compos. Sci. Technol., 2000, vol. 60, pp. 845–55

    Article  CAS  Google Scholar 

  26. T. Surek: J. Appl. Phys., 1976, vol. 47, pp. 4384–93

    Article  CAS  Google Scholar 

  27. A.N. Roviglione, J.D. Hermida: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 313–30

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the National Natural Science Foundation of China (Grant No. 50174023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dequan Shi.

Additional information

Manuscript submitted July 21, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, D., Li, D. & Gao, G. New Method and Device to Fast Measure Surface Tension of the Melt and Its Applications in Foundry. Metall Mater Trans B 39, 46–55 (2008). https://doi.org/10.1007/s11663-007-9119-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-007-9119-1

Keywords

Navigation