Skip to main content
Log in

Modeling of Flux Reaction and Mixing in Continuous Casting Mold of Medium Mn Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The interfacial reaction between molten steel and mold flux causes MnO accumulation and SiO2 reduction in the mold flux during the continuous casting of medium Mn steel. A three-dimensional reaction model in the mold has been developed which coupled species transport with fluid flow, heat transfer and solidification. The model was applied to characterize the interfacial reaction and composition distribution of mold flux during the casting process. The model predictions were validated by comparison with experimental and plant measurements. The results show that the mold flux is driven by the surface flow of molten steel to form a high-speed circulating flow zone of mold flux at a distance 110 to 220 mm away from the mold’s narrow face, in which the reaction rate is high because of the fast interface update, which increases the time for the reaction with the molten steel and the components’ diffusion in the liquid flux pool. The mold flux near the nozzle flows slowly, allowing more time for interfacial reaction and component diffusion. The concentration of MnO in the molten flux pool decreases from the nozzle to the narrow face of the mold. The solid flux film is formed by the mixing and solidification of liquid mold fluxes with different MnO accumulations in different reaction stages, so that the MnO concentration in the solid film is lower than that of the liquid mold flux. The model predictions provide a basis for explaining the difference in composition of the mold flux film in the continuous casting of medium Mn steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Iron Steel Technol., 2011, vol. 8, pp. 231–40.

    Google Scholar 

  2. S. Street, K. James, N. Minor, A. Roelant, and J. Tremp: Iron Steel Technol., 2008, vol. 5, pp. 38–49.

    CAS  Google Scholar 

  3. M. Kim, M. Park, S. Kang, J. Park, and Y. Kang: ISIJ Int., 2018, vol. 58, pp. 686–95.

    Article  CAS  Google Scholar 

  4. J. Yang and M. Zhu: ISIJ Int., 2016, vol. 56, pp. 2191–8.

    Article  CAS  Google Scholar 

  5. M.A. Rhamdhani, K.S. Coley, and G.A. Brooks: Metall. Mater. Trans. B., 2005, vol. 36B, pp. 219–27.

    Article  CAS  Google Scholar 

  6. D.J. Kim and J.H. Park: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 875–86.

    Article  Google Scholar 

  7. X. Yu, G.-H. Wen, P. Tang, F.-J. Ma, and H. Wang: J. Iron Steel Res. Int., 2011, vol. 18, pp. 20–5.

    Article  CAS  Google Scholar 

  8. Q. Wang, S. Qiu, and P. Zhao: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 424–30.

    Article  Google Scholar 

  9. M. Kim, S. Lee, J. Cho, M. Park, H. Lee, and Y. Kang: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 299–308.

    Article  Google Scholar 

  10. T. Wu, S. He, L. Zhu, and Q. Wang: Mate. Trans., 2016, vol. 57, pp. 58–63.

    Article  CAS  Google Scholar 

  11. J. Yang, D. Chen, and M. Zhu: J. Iron Steel Res. Int., 2020, vol. 27, pp. 788–95.

    Article  CAS  Google Scholar 

  12. Y. Kang, M. Kim, S. Lee, J. Cho, M. Park, and H. Lee: Metall. Mater. Trans. B., 2013, vol. 44B, pp. 309–16.

    Article  Google Scholar 

  13. M. Kim and Y. Kang: Calphad., 2018, vol. 61, pp. 105–15.

    Article  CAS  Google Scholar 

  14. S. He, Q. Wang, J. Zeng, M. Zhang, and B. Xie: J. Iron Steel Res. Int., 2009, vol. 12, pp. 59–65.

    Google Scholar 

  15. G. Kim, C. Kim, and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170–6.

    Article  Google Scholar 

  16. W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 66–74.

    Article  CAS  Google Scholar 

  17. J. Cho, K. Blazek, M. Frazee, H. Yin, J. Park, and S. Moon: ISIJ Int., 2013, vol. 53, pp. 62–70.

    Article  Google Scholar 

  18. C. Shi, M. Seo, J. Cho, and S. Kim: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1081–97.

    Article  Google Scholar 

  19. X. Fu, G. Wen, P. Tang, Q. Liu, and Z. Zhou: Ironmak. Steelmak., 2014, vol. 41, pp. 342–9.

    Article  Google Scholar 

  20. W. Yan, W. Chen, Y. Yang, C. Lippold, and A. Mclean: ISIJ Int., 2015, vol. 55, pp. 1000–9.

    Article  CAS  Google Scholar 

  21. J. Li, Q. Shu, X. Hou, and K. Chou: ISIJ Int., 2015, vol. 55, pp. 830–6.

    Article  CAS  Google Scholar 

  22. D. Xiao, W. Wang, B. Lu, and X. Zhang: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 263–70.

    Google Scholar 

  23. J. Yang, H. Cui, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 2636–46.

    Article  Google Scholar 

  24. D. Zheng, C. Shi, Z. Li, J. Li, and J. Cho: J. Iron Steel Res. Int., 2020, vol. 27, pp. 33–41.

    Article  CAS  Google Scholar 

  25. J. Cho, S. Yoo, M. Park, J. Park, and K. Moon: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 187–96.

    Article  Google Scholar 

  26. J. Yang, Z. Cai, D. Chen, and M. Zhu: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1104–13.

    Article  Google Scholar 

  27. J. Yang, Z. Cai, and M. Zhu: ISIJ Int., 2018, vol. 58, pp. 299–308.

    Article  CAS  Google Scholar 

  28. F. Calderon, N. Sano, and Y. Matsushita: Metall. Mater. Trans. B., 1971, vol. 2B, pp. 3325–32.

    Article  Google Scholar 

  29. Y. Ukyo and K. Goto: Tetsu-to-Hagane., 1982, vol. 68, pp. 1981–6.

    Article  CAS  Google Scholar 

  30. H. Keller, K. Schwerdtfeger, and K. Hennesen: Metall. Mater. Trans. B., 1979, vol. 10B, pp. 551–4.

    Article  CAS  Google Scholar 

  31. A.C. Mikrovas, S.A. Argyropoulos, and I.D. Sommerville: Iron Steelmaker., 1991, vol. 18, pp. 51–61.

    CAS  Google Scholar 

  32. R. Eriksson and S. Seetharaman: Metall. Meter. Trans. B., 2004, vol. 35B, pp. 461–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to the Major Program of Liaoning Province (Grant No. 2020JH1/10100001) and the National Natural Science Foundation of China (Grant Nos. 51904046, 52174317).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang or Lingzhong Kong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, L., Li, Y. et al. Modeling of Flux Reaction and Mixing in Continuous Casting Mold of Medium Mn Steel. Metall Mater Trans B 53, 1516–1525 (2022). https://doi.org/10.1007/s11663-022-02461-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02461-1

Navigation