Skip to main content
Log in

Numerical Simulation of the Denitrification Reaction of INCONEL 718 Superalloy During Vacuum Induction Melting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The nitrogen content of INCONEL 718 superalloy is a key factor in determining its performance. Vacuum induction melting (VIM) is the main stage of nitrogen removal in the production of superalloys, where the nitrogen content of the alloy should be minimized. In this work, a mathematical model of electromagnetic thermal flow mass-transfer coupling was developed to investigate the feature of the electromagnetic force, heat transfer, fluid flow, and nitrogen distribution in the melt pool during VIM, which was used to analyze the effect of electromagnetic stirring on the denitrification reaction by means of finite element simulation. The effects of current intensity and pressure on the denitrification reaction during VIM were studied. Moreover, the model developed in this article was validated. The results indicated that electromagnetic stirring accelerated the mass transfer rate of nitrogen and had a significant effect on the distribution of nitrogen content in the melt pool of superalloys during VIM. Increasing the current intensity and reducing the pressure will promote denitrification of superalloys. The model validation results showed that the numerical simulation results were less inaccurate than traditional theoretical calculations, so the model developed in this article can more accurately predict the variation in nitrogen content of INCONEL 718 superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. * INCONEL 718 is a trademark of Special Metals Corporation, Huntington, WV.

References

  1. Y. Chen, Y.B. Guo, M.J. Xu, C.F. Ma, Q.L. Zhang, L. Wang, J.H. Yao, and Z.G. Li: Mater. Sci. Eng. A., 2019, vol. 754(29), pp. 339–47.

    Article  CAS  Google Scholar 

  2. B. Farber, K.A. Small, C. Allen, R.J. Causton, A. Nichols, J. Simbolick, and M.L. Taheri: Mater. Sci. Eng. A., 2018, vol. 712(17), pp. 539–47.

    Article  CAS  Google Scholar 

  3. A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado: J. Mater. Process. Technol., 2006, vol. 177(1–3), pp. 469–72.

    Article  CAS  Google Scholar 

  4. M. Wang, L. Zhang, Y.Q. Yang, M. Gao, L.L. Ding, Y.C. Ma, and K. Liu: Rare Met. Mater. Eng., 2020, vol. 49(11), pp. 155–60.

    Google Scholar 

  5. X.L. Guo, J.B. Yu, X.F. Li, Y. Hou, and Z.M. Ren: Ironmak. Steelmak., 2018, vol. 45(3), pp. 215–23.

    Article  CAS  Google Scholar 

  6. H. Wada and R.D. Pehlke: Metall. Trans. B., 1981, vol. 12B, pp. 333–39.

    Article  CAS  Google Scholar 

  7. J.C. Lin, R. Schmid, and Y.A. Chang: Metall. Trans. B., 1986, vol. 17B, pp. 785–89.

    Article  CAS  Google Scholar 

  8. K. Shinme, T. Matsuo, and M. Morishige: Trans Iron Steel Inst. Jpn., 1988, vol. 28(4), pp. 297–304.

    Article  Google Scholar 

  9. H. Wada and R.D. Pehlke: Metall. Trans. B., 1977, vol. 8B, pp. 675–82.

    Article  CAS  Google Scholar 

  10. Y. Li, Y. Tan, X.G. You, H.Y. Cui, P.T. Li, Y.N. Wang, and Q.F. You: Vacuum., 2021, vol. 189, p. 110212.

    Article  CAS  Google Scholar 

  11. K. Qian, B. Chen, L. Zhang, Z.H. Du, and K. Liu: Vacuum., 2020, vol. 179, p. 109521.

    Article  CAS  Google Scholar 

  12. J.P. Niu and Z.Q. Hu: Adv. Mater. Res., 2021, vol. 284–286, pp. 2433–36.

    Google Scholar 

  13. M. Kranjc, A. Zupanic, D. Miklavcic, and T. Jarm: Int. J. Heat Mass Transfer., 2010, vol. 53(17–18), pp. 3585–91.

    Article  CAS  Google Scholar 

  14. P. Bulinski, J. Smolka, S. Golak, R. Przylucki, M. Palacz, G. Siwiec, B. Melka, and L. Blacha: Int. J. Heat Mass Transf., 2018, vol. 126B, pp. 980–92.

    Article  Google Scholar 

  15. P. Bulinski, J. Smolka, G. Siwiec, L. Blacha, S. Golak, R. Przylucki, M. Palacz, and B. Melka: Appl. Therm. Eng., 2019, vol. 150(5), pp. 348–58.

    Article  Google Scholar 

  16. B. Yang, H. Lei, Q. Bi, J.M. Jiang, H.W. Zhang, Y. Zhao, and J.A. Zhou: Steel Res. Int., 2018, vol. 89(10), p. 1800145.

    Article  Google Scholar 

  17. Q. Wang, B.K. Li, and F. Tsukihashi: ISIJ Int., 2014, vol. 54(2), pp. 311–20.

    Article  Google Scholar 

  18. B. Wang, S.Y. Shen, Y.W. Ruan, S.Y. Cheng, W.J. Peng, and J.Y. Zhang: Acta Metall. Sin., 2020, vol. 56(4), pp. 619–32.

    Google Scholar 

  19. M. Ocilka and D. Kovac: Acta Electrotech. Inform., 2015, vol. 1 5(1), pp. 29–33.

  20. W.D. Wang, Y.C. Ma, L.X. Zhou, K. Liu, and L.T. Wang: Hot Work. Technol., 2016, vol. 45(19), pp. 73–76.

    CAS  Google Scholar 

  21. J.R. Yang, R.R. Chen, H.S. Ding, J.J. Guo, J.C. Han, and H.Z. Fu: Appl. Therm. Eng., 2013, vol. 59(1–2), pp. 69–76.

    Article  CAS  Google Scholar 

  22. A. Queva, G. Guillemot, C. Moriconi, C. Metton, and M. Bellet: Addit. Manuf., 2020, vol. 35, p. 101249.

    CAS  Google Scholar 

  23. A. Asad, K. Bauer, K. Chattopadhyay, and R. Schwarze: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1378–87.

    Article  Google Scholar 

  24. P. Bulinski, J. Smolka, S. Golak, R. Przylucki, L. Blacha, R. Bialecki, M. Palacz, and G. Siwiec: Arch. Metall. Mater., 2015, vol. 60(3A), pp. 1575–79.

    Article  CAS  Google Scholar 

  25. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys., 1992, vol. 100(2), pp. 335–54.

    Article  CAS  Google Scholar 

  26. D.Q. Geng, H. Lei, F. Liu, and J.C. He: J. Iron Steel Res., 2010, vol. 22(7), pp. 15–18.

  27. C. Kowanda and M.O. Speidel: Scripta Mater., 2003, vol. 48(8), pp. 1073–78.

    Article  CAS  Google Scholar 

  28. S.Y. Gao, M. Wang, X.Y. Xie, M. Liu, and Y.P. Bao: Metals, 2021, vol. 11 (7), p. 1119.

  29. J.P. Niu, X.F. Sun, K.N. Yang, Q. Zheng, H.R. Guan, and Z.Q. Hu: Trans Nonferrous Met. Soc. China., 2002, vol. 12(1), pp. 11–15.

    CAS  Google Scholar 

  30. R.F. Abdulrahman and A. Hendry: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 1103–12.

    Article  CAS  Google Scholar 

  31. H.Y. Tang, X.S. Li, S. Zhang, and J.Q. Zhang: Acta Metall. Sin., 2020, vol. 56(12), pp. 63–76.

    Google Scholar 

  32. B. Hu, R.Q. Yu, and W.J. Xu: Acta Aeronaut. Astronaut. Sin., 2015, vol. 36(10), pp. 3450–56.

    Google Scholar 

  33. K.C. Mills, Y.M. Youssef, Z.S. Li, and Y.C. Su: ISIJ Int., 2006, vol. 46(5), pp. 623–32.

    Article  CAS  Google Scholar 

  34. P.N. Quested, R.F. Brooks, L. Chapman, R. Morrell, Y. Youssef, and K.C. Mills: Mater. Sci. Technol., 2009, vol. 25(2), pp. 154–62.

    Article  CAS  Google Scholar 

  35. R. Schwarze and F. Obermeier: Model. Simul. Mater. Sci. Eng., 2004, vol. 12 (5), p. 985.

  36. M. Scepanskis, A. Jakovics, E. Baake, and B. Nacke: Int. J. Multiph. Flow., 2014, vol. 64, pp. 19–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the S&T Program Hebei (Grant No. 20311007D), Industrial Strong Foundation Project of the Ministry of Industry and Information Technology (Grant No. 2018-130000-33-03-001517), and National Science Foundation of China (Grant Nos. 51874103 and 51974020).

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Gao, J., Yang, S. et al. Numerical Simulation of the Denitrification Reaction of INCONEL 718 Superalloy During Vacuum Induction Melting. Metall Mater Trans B 53, 1474–1483 (2022). https://doi.org/10.1007/s11663-022-02457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02457-x

Navigation