Skip to main content
Log in

Study on the Reaction Between Anodic Gas and Nd in Neodymium Oxide Molten Salt Electrolysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Neodymium oxide molten salt electrolysis in fluoride systems is the principal method of obtaining Nd and its alloys. However, the quality and performance of the Nd produced are limited by its carbon content, which is generated by the reaction of the anodic gas with Nd during the electrolytic process. In the present study, we investigated the mechanism and controlling factors of this reaction using a series of simulative experiments in which CO was pumped through a Ti tube at certain flow rates into a molten salt system containing a NdF3–LiF electrolyte and liquid Nd. The factors considered were the distance from the bottom of the Ti tube to the surface of the molten Nd (L), the temperature, and the electrolyte composition and viscosity. Our results demonstrate that the reaction between CO gas and Nd results in an increase in the carbon content of the Nd. Furthermore, we have established conditions that minimize this increasing carbon content, i.e., L = 35 mm in NdF3 85 pct–LiF 15 pct electrolyte at 1323 K. The side dissolution of Nd2O3 and Nd occurs in this electrolyte system, converting the initial NdF3–LiF electrolyte system into an NdF3–LiF–NdOF–NdF2 electrolyte system. Furthermore, our study revealed that the viscosity of the NdF3–LiF–(Nd2O3–NdF2) electrolyte system in the temperature from 1323 to 1373 K is between 0.010 and 0.040 Pa s, which is moderately low, and that the addition of Nd2O3 and NdF2 increases the viscosity of the NdF3–LiF electrolyte system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Bao: Mater. China., 2004, vol. 23, pp. 29–31.

    Google Scholar 

  2. Y.B. Liu, G.H. Chen, B. Yu, H.T. Huang, Q.J. Zhang, and W.C. Zhang: Chin. Rare Earths., 2021, vol. 42, pp. 133–43.

    Google Scholar 

  3. C.F. Liao, C. Guo, J.Y. Lin, B.Q. Cai, and X. Wang: Chin. Rare Earths., 2021, vol. 42, pp. 122–28.

    Google Scholar 

  4. X.L. Zhang, H.X. Liu, X. Zheng, W.H. Zhe, J. Liang, and Z. Jue: Adv. Mater. Res., 2013, vol. 800, pp. 496–500.

    Article  Google Scholar 

  5. Y.T. Gong, H.J. Zhou, Q.S. Pang, and H.H. Wang: Rare Met. Cem. Carbides., 2018, vol. 46, pp. 1–5.

    Google Scholar 

  6. Y.F. Wu, G.L. Zhao, Z.X. Liu, Y.Q. Li, B.R. Guan, and Z.X. Liu: J. Chin. Soc. Rare Earths., 2017, vol. 35, pp. 606–13.

    Google Scholar 

  7. Y.T. Gong, Y.Z. Li, Q.S. Pang, Y.P. Xiong, and H. Zang: Chin. Rare Earths., 2020, vol. 41, pp. 133–43.

    Google Scholar 

  8. Q.S. Liu, W.D. Tang, and J.L. Wang: J. Chin. Soc. Rare Earths., 2015, vol. 33, pp. 737–46.

    Google Scholar 

  9. N.X. Feng, F.H. Liang, and C.S. Zhao: Nonferr. Met. Eng., 1998, vol. 50, pp. 60–64.

    CAS  Google Scholar 

  10. V. Constantin: Chin. J. Chem. Eng., 2015, vol. 23, pp. 722–26.

    Article  CAS  Google Scholar 

  11. M.J. Sun, B.K. Li, L.M. Li, Q. Wang, J.P. Peng, Y.W. Wang, and C.P.C. Sherman: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 3161–73.

    Article  Google Scholar 

  12. N. Xiong, Y. Tian, B. Yang, B.Q. Xu, T. Dai, and Y.N. Dai: Vacuum., 2019, vol. 160, pp. 213–25.

    Article  CAS  Google Scholar 

  13. Y. Tian, B.Q. Xu, C.B. Yang, B. Yang, T. Qu, H.X. Liu, Y.N. Dai, and D.C. Liu: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1936–41.

    Article  Google Scholar 

  14. L.H. Prentice, M.W. Nagle, T.R.D. Barton, S. Tassios, B.T. Kuan, P.J. Witt, and K.K. Constanti-Carey: The Minerals, Metals, and Materials Society, 2012, pp. 31–35.

  15. J.Q. Xue, J. Zhang, W.B. Tang, Q. Bi, and Z.Y. Guo: Rare Met. Cem. Carbides., 2014, vol. 42, pp. 19–22.

    Google Scholar 

  16. F.J. Wu, J.Q. Ouyang, W.L. Yang, X. Luo, and X.Y. Wu: Hydrometall. China., 2017, vol. 36, pp. 430–33.

    Google Scholar 

  17. F. Li: Xi'an University of Architecture and Technology, Xi'an, 2018.

  18. Y. Gao, Y.K. Shi, X.L. Liu, and B. Li: Electrochim. Acta., 2016, vol. 190, pp. 208–14.

    Article  CAS  Google Scholar 

  19. Q.F. Huo: Metallurgical Industry Press, Beijing, 2002, p. 162.

  20. G.X. Xu. Metallurgical Industry Press, Beijing, 1995, p. 156.

  21. Z.F. Liu: Xi'an University of Architecture and Technology, Xi'an, 2015.

  22. S. Feng, Y.F. Wu, Z.X. Liu, Y.F. Zhou, and S.N. Li: Chin. Rare Earths., 2021, vol. 42, pp. 1–11.

    Google Scholar 

  23. L.L. Liu, J.M. Sun, Z.P. Zhao, and J.G. Chen: Chem. Prod. Technol., 2008, vol. 15, pp. 59–61.

    CAS  Google Scholar 

  24. K.R. Liu, J.S. Chen, and X.J. Wei: Chin. J. Nonferr. Met., 2001, vol. 11, pp. 1118–21.

    CAS  Google Scholar 

  25. K.R. Liu, J.S. Chen, and X.J. Wei: Chin. Rare Earths., 2001, vol. 22, pp. 30–33.

    CAS  Google Scholar 

  26. X.L. Liu, C. Huang, and B. Li: Mater. Trans., 2017, vol. 58, pp. 395–99.

    Article  CAS  Google Scholar 

  27. S.H. Seok, S.M. Jugn, Y.S. Lee, and D.J. Min: ISIJ Int., 2007, vol. 47, pp. 1090–96.

    Article  CAS  Google Scholar 

  28. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lörz, and R. Carli: Ironmak. Steelmak., 2000, vol. 27, pp. 238–42.

    Article  CAS  Google Scholar 

  29. W.B. Xin, Y.C. Deng, Y.J. Jiang, and Y.Q. Wang: High Temp. Mater. Process., 2019, vol. 38, pp. 897–904.

    Article  CAS  Google Scholar 

  30. Y.C. Deng, S.L. Wu, Y.J. Jiang, and S.Q. Jia: Mater. Metall. Mater. Trans. B., 2016, vol. 47B, pp. 2433–39.

    Article  Google Scholar 

  31. Y.C. Deng, W.B. Xin, Y.J. Jiang, and C. Guo: Chin. Rare Earths., 2019, vol. 40, pp. 11–19.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Nature Science Foundation of China (Grant no. 52164035), the Natural Science Foundation of Inner Mongolia (Grant nos. 2018LH05018, 2020MS05009), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (Grant no. NJYT-20-B27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinju Jiang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Xin, W., Jiang, Y. et al. Study on the Reaction Between Anodic Gas and Nd in Neodymium Oxide Molten Salt Electrolysis. Metall Mater Trans B 53, 1236–1243 (2022). https://doi.org/10.1007/s11663-022-02450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02450-4

Navigation