Skip to main content
Log in

Decarburization of Iron Carbon Droplets with Oxidizing Slag: An Experimental Study to Understand the Effect of Ionic and Electronic Conductivity on Decarburization Kinetics

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An experimental study was performed to investigate the effect of ionic and electronic conductivity of oxidizing slags on the kinetics of decarburization of liquid metal droplets. An approach based on Wagner’s oxidation theory was developed to analyze the reaction kinetics with the variation of the slag conductivity. Despite the sufficiency of reactants, a sudden shutdown of decarburization reaction was observed for lower conductivity slag, whereas the reaction reached near thermodynamic equilibrium where the conductivity was higher. Based on this observation, a mechanism of accumulation of charge at the slag–metal interface has been proposed as the cause of premature shutdown of the reaction. While increasing basicity was also found to accelerate reaction kinetics and to eliminate or mitigate against premature shutdown of the reaction, it made no difference for slags of high electronic conductivity. This observation suggests that the desired rate of decarburization can be attained at lower basicity if the electronic conductivity of the slag is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({\left(\frac{\text{d}{n}_{\rm CO}}{\text{d}t}\right)}_{\text{peak}}\) :

Decarburization rate at the peak period (mol/m2-s)

\({C}_{\text{FeO}}\) :

Concentration of FeO (mol/m3)

\({E}^{\text{crit}}\) :

Electric field at the critical point of reaction shutdown (V/m)

\({J}_{i}\) :

Flux of charged species i (mol/m2-s)

\({a}_{\text{FeO}}\) :

Activity of FeO in the slag (–)

\({a}_{i}^{\text{bulk}}\) and \({a}_{i}^{\text{int}}\) :

Activity of charged species i at the bulk slag and s/m interface respectively (–)

\(\frac{{\text{d}}{n}_{\text{FeO}}}{{\text{d}}t}\) :

Flux of FeO in the slag (mol/m2-s)

\(\frac{{\text{d}}{\mu }_{i}}{{\text{d}}x}\) :

Chemical potential gradient of species i (J/mol-m)

\(\frac{{\text{d}}\varnothing }{{\text{d}}x}\) :

Electrical potential gradient (V/m)

\({k}_{\text{s}}\) :

Mass transfer coefficient (m/s)

\({{k}_{\rm s}^{\rm elec}}\) :

Electrochemical mass transfer coefficient (m/s)

\({p}_{{\rm O}_{2}}\) :

Oxygen potential in the slag (Pa)

\({t}_{i}\) :

Transference number of charged species i (–)

\({z}_{i}\) :

Charge number of species i (–)

\({\mu }_{i}\) :

Chemical potential of species i in slag

\({\sigma }_{\rm el}\) :

Electronic conductivity of slag (S/m)

\({\sigma }_{\rm ion}\) :

Ionic conductivity of slag (S/m)

\({\sigma }_{\rm tot}\) :

Total conductivity of slag (S/m)

\(\Delta x\) :

Boundary layer thickness in the slag (m)

F :

Faraday constant (C/mol)

R :

Universal gas constant (J/mol-K)

T :

Temperature (K)

\(V(t)\) :

Volume of droplet at time t (m3)

y :

Ferric fraction (\(\frac{\text{Fe}^{3+}}{\text{Fe}^{2+}+\text{Fe}^{3+}}\)) in the slag (–)

References

  1. G. Brooks, Y. Pan, and K.S. Coley: Metall. Mater. Trans. B., 2005, vol. 36B, pp. 525–35.

    CAS  Google Scholar 

  2. Subagyo, G.A. Brooks, and K.S. Coley: Can. Metall. Q., 2005, vol. 44, pp. 119–30.

  3. H. Sun, K. Gao, V. Sahajwalla, K. Mori, and R.D. Pehlke: ISIJ Int., 1999, vol. 39, pp. 1125–33.

    CAS  Google Scholar 

  4. K. Gao, V. Sahajwalla, H. Sun, C. Wheatley, and R. Dry: ISIJ Int., 2000, vol. 40, pp. 301–8.

    CAS  Google Scholar 

  5. M. Hayer and S.G. Whiteway: Can. Metall. Q., 1973, vol. 12, pp. 35–44.

    CAS  Google Scholar 

  6. P.G. Roddis: J. Iron Steel Inst., 1973, vol. 211, pp. 53–8.

    CAS  Google Scholar 

  7. J.B. See and N.A. Warner: J. Iron Steel Inst., 1973, vol. 211, pp. 44–52.

    CAS  Google Scholar 

  8. D. Sain and G.R. Belton: Metall. Trans. B., 1976, vol. 7B, pp. 235–44.

    CAS  Google Scholar 

  9. P.A.A. Distin, G.D.D. Hallett, and F.D. Richardson: J. Iron Steel Inst., 1968, vol. August, pp. 821–33.

  10. H. Gaye and P.V. Riboud: Metall. Trans. B., 1977, vol. 8B, pp. 409–15.

    CAS  Google Scholar 

  11. C.L. Molloseau and R.J. Fruehan: Metall. Mater. Trans. B., 2002, vol. 33B, pp. 335–44.

    CAS  Google Scholar 

  12. D.J. Min and R.J. Fruehan: Metall. Trans. B., 1992, vol. 23B, pp. 29–37.

    CAS  Google Scholar 

  13. E. Chen and K.S. Coley: Ironmak. Steelmak., 2010, vol. 37, pp. 541–5.

    CAS  Google Scholar 

  14. D.E. Woolley and U.B. Pal: ISIJ Int., 1999, vol. 39, pp. 103–12.

    CAS  Google Scholar 

  15. G.G.K. Murthy, A. Hasham, and U.B. Pal: Ironmak. Steelmak., 1993, vol. 20, pp. 191–200.

    CAS  Google Scholar 

  16. G.G.K. Murthy, A. Hasham, and U.B. Pal: ISIJ Int., 1994, vol. 34, pp. 408–13.

    CAS  Google Scholar 

  17. S. Ramachandran, T.B. King, and N.J. Grant: J. Met., 1956, vol. 8, pp. 1549–58.

    CAS  Google Scholar 

  18. T. Gare and G.S.F. Hazeldean: Ironmak. Steelmak., 1981, vol. 8, pp. 169–81.

    CAS  Google Scholar 

  19. G.G.K. Murthy, Y. Sawada, and F. Elliot: J: Ironmak. Steelmak., 1993, vol. 20, pp. 179–200.

    CAS  Google Scholar 

  20. D.E. Woolley and U.B. Pal: Ironmak. Steelmak., 2002, vol. 29, pp. 125–32.

    CAS  Google Scholar 

  21. D.E. Woolley and U.B. Pal: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 1999, vol. 30, pp. 877–89.

    Google Scholar 

  22. W.D. Judge, J. Paeng, and G. Azimi: Nat. Mater., 2021, https://doi.org/10.1038/s41563-021-01106-z.

    Article  Google Scholar 

  23. W.D. Judge and G. Azimi: ECS Trans., 2018, vol. 85, pp. 91–102.

    CAS  Google Scholar 

  24. W.D. Judge, J. Paeng, and G. Azimi: Electrochim. Acta., 2021, vol. 389, p. 138755.

    CAS  Google Scholar 

  25. U. Pal, T. Debroy, and G. Simkovich: Metall. Trans. B., 1985, vol. 16B, pp. 77–82.

    CAS  Google Scholar 

  26. Y. Sayad-Yaghoubi, S. Sun, and S. Jahanshahi: in Molten Slags, Fluxes and Salts’97 Conference, 1997, pp. 839–44

  27. X.J. Guo, R. Li, and R. Harris: Can. Metall. Q., 1999, vol. 38, pp. 33–41.

    CAS  Google Scholar 

  28. J.L. Speelman, W.F. Caley, and K.G. Leewis: Metall. Trans. B., 1989, vol. 20B, pp. 31–7.

    CAS  Google Scholar 

  29. Y. Sayadyaghoubi, S. Sun, and S. Jahanshahi: Metall. Mater. Trans. B., 1995, vol. 26B, pp. 795–802.

    CAS  Google Scholar 

  30. J. Biswas, K. Gu, and K.S. Coley: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 3888–906.

    Google Scholar 

  31. J. Biswas, K. Gu, and K.S. Coley: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 4215–29.

    Google Scholar 

  32. M. Barati and K.S. Coley: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 51–60.

    CAS  Google Scholar 

  33. K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2984–3001.

    Google Scholar 

  34. J. Berthon, A. Revcolevschi, and H. Morikawa: J. Cryst. Growth., 1979, vol. 47, pp. 736–8.

    CAS  Google Scholar 

  35. K. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2343–53.

    Google Scholar 

  36. H.-J. Engell and P. Vygen: Rep. Bunsen Soc. Phys. Chem., 1968, vol. 72, pp. 5–11.

    CAS  Google Scholar 

  37. M. Barati and K.S. Coley: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 41–9.

    CAS  Google Scholar 

  38. W.R. Dickson and E.B. Dismukes: Trans. Metall. Soc. AIME., 1962, vol. 224, pp. 505–11.

    CAS  Google Scholar 

  39. M.T. Simnad, G. Derge, and I. George: J. Met., 1954, vol. 6, pp. 1386–90.

    Google Scholar 

  40. J.O.M. Bockris, J.A. Kitchener, S. Ignatowicz, and J.W. Tomlinson: Trans. Faraday Soc., 1952, vol. 48, pp. 75–91.

    CAS  Google Scholar 

  41. E.W. Mulholland, G.S.F. Hazeldean, and M. Davies: J. Iron Steel Inst., 1973, vol. 211, pp. 632–9.

    CAS  Google Scholar 

  42. M.D. Pomeroy: McMaster University, 2011.

  43. Y. Sasaki, S. Hara, D.R. Gaskell, and G.R. Belton: Metall. Trans. B., 1984, vol. 15B, pp. 563–71.

    CAS  Google Scholar 

  44. M. Barati and K.S. Coley: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 61–9.

    CAS  Google Scholar 

  45. C. Wagner: Z Phys. Chem., 1933, vol. B21, p. 25.

    CAS  Google Scholar 

  46. E.A. Pastukhov, O.A. Esin, and S.K. Chuchmarev: Sov. Electrochem., 1966, vol. 2, pp. 193–8.

    Google Scholar 

  47. Y. Takeda, S. Nakazawa, and A. Yazawa: Can. Metall. Q., 1980, vol. 19, pp. 297–305.

    CAS  Google Scholar 

  48. K.S. Goto, T. Kurahashi, and M. Sasabe: Metall. Trans. B., 1977, vol. 8B, pp. 523–8.

    CAS  Google Scholar 

  49. H. Larson and J. Chipman: J. Met., 1953, vol. 5, pp. 089–1096.

    Google Scholar 

  50. S. Wright and L. Zhang: in VII Int. Conf. on Molten Slags Fluxes and Salts, 2004, pp. 231–36.

  51. M. Barati and K.S. Coley: Metall. Mater. Trans. B., 2005, vol. 36B, pp. 169–78.

    CAS  Google Scholar 

  52. P.B. Drain, K. Gu, N. Dogan, R.J. Longbottom, M.W. Chapman, B.J. Monaghan, and K.S. Coley: ISIJ Int., 2021, vol. 61, pp. 734–44.

    CAS  Google Scholar 

  53. S. Jahanshahi: Imperial College of Science and Technology, London, 1980.

  54. N. Simento, H. Lee, and P. Hayes: ISIJ Int., 1999, vol. 39, pp. 1217–23.

    CAS  Google Scholar 

  55. B. Sarma, A.W. Cramb, and R.J. Fruehan: Metall. Mater. Trans. B Process Metall. Mater., 1996, vol. 27B, pp. 717–30.

    CAS  Google Scholar 

  56. S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H.E. Jeffes: Ironmak. Steelmak., 1984, vol. 11, pp. 202–13.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to McMaster Steel Research Center and the Natural Sciences and Engineering Research Council for financial support. The authors wish to thank Dr. Kezhuan Gu for his valuable suggestions.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayasree Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The slag oxygen potential is a function of Fe3+/Fe2+ ratio and can be expressed as follows:

$$\text{ln}{p}_{{\rm O}_{2}}={A}_{1}\times ln\frac{\text{Fe}^{3+}}{\text{Fe}^{2+}}\; \text{where}\; {A}_{1}\; \text{is\; a \;constant}$$
(A.1)
$$\text{d\;ln}{p}_{{\rm O}_{2}}={A}_{1}\times \text{d\;ln}\frac{\text{Fe}^{3+}}{\text{Fe}^{2+}}={A}_{1}\times \text{d\;ln}\frac{\frac{\text{Fe}^{3+}}{\text{Fe}_{t}}}{\frac{\text{Fe}^{2+}}{\text{Fe}_{t}}}={A}_{1}\times \text{d\;ln}\frac{y}{1-y}$$
(A.2)

The slag conductivities can be expressed as a function of ferric fraction (y)

  1. 1.

    Ionic conductivity

    $${\sigma }_{\rm ion}={\sigma }_{0}-ay$$
    (A.3)
  2. 2.

    Electronic conductivity

    $${\sigma }_{\rm e1}=b\left[\text{Fe}^{2+}\right]\left[\text{Fe}^{3+}\right]=by\left(1-y\right)$$
    (A.4)

    where the constants \({\sigma }_{0},\;a\) and b are functions of slag composition. From the Nernst–Einstein equation for ionic conductivity,

    $${\sigma }_{0}=\frac{4{F}^{2}}{RT}\times ({C}_{\text{Ca}^{2+}}{D}_{\text{Ca}^{2+}}+{C}_{\rm Fe}{D}_{\text{Fe}^{2+}})$$
    (A.5)
    $$a=\frac{4{F}^{2}}{RT}{C}_{\rm Fe}{D}_{\text{Fe}^{2+}}$$
    (A.6)

From the diffusion-assisted charge hopping model for electronic conductivity,

$$b=4\pi {N}_{\rm a}\times \frac{{r}^{0}{r}^{\ast}}{{r}^{0}-{r}^{\ast}}\times \frac{{D}_{\text{Fe}^{2+}}{F}^{2}}{RT}\times {C}_{\rm Fe}^{2}$$
(A.7)

Applying these to Eq. [3] and integrating from the slag–metal interface to bulk

$$\frac{\text{d}{n}_{\rm FeO}}{\text{d}t}=\frac{RT}{8{F}^{2}}\times \left(\frac{{A}_{1}}{\Delta x}\right){\int }_{\rm int}^{\rm bulk}\frac{{(\sigma }_{0}-ay)by(1-y)}{{\sigma }_{0}-ay+by\left(1-y\right)}\text{d\;ln}\frac{y}{1-y}$$
(A.8)
$$=\frac{RT}{8{F}^{2}}\times \left(\frac{{A}_{1}}{\Delta x}\right){\int }_{i}^{b}\left[\frac{b{(\sigma }_{0}-ay)(1-y)}{{\sigma }_{0}-ay+by\left(1-y\right)}\text{d}y+\frac{{(\sigma }_{0}-ay)by}{{\sigma }_{0}-ay+by\left(1-y\right)}\text{d}y\right]$$
(A.9)
$$=\frac{RT}{8{F}^{2}}\times \left(\frac{{A}_{1}}{\Delta x}\right){\int }_{i}^{b}\left[\frac{b{(\sigma }_{0}-ay)}{{\sigma }_{0}-ay+by\left(1-y\right)}\text{d}y\right]$$
(A.10)
$$=\frac{RT}{16{F}^{2}}\times \left(\frac{{A}_{1}a}{\Delta x}\right){\int }_{\rm int}^{\rm bulk}\left[\frac{-2by+\left(b-a\right)}{{\sigma }_{0}-ay+by\left(1-y\right)}\text{d}y+\frac{\frac{2b{\sigma }_{0}}{a}-\left(b-a\right)}{{\sigma }_{0}-ay+by\left(1-y\right)}\text{d}y\right]$$
(A.11)
$$=\frac{RT}{16{F}^{2}}\times \left(\frac{{A}_{1}a}{\Delta x}\right)[\text{ln}\left({\sigma }_{\rm tot}\right)+{\int }_{\rm int}^{\rm bulk}\left\{\frac{2b{\sigma }_{0}-a\left(b-a\right)}{-ab}\right\}\frac{\text{d}y}{{\left(y+\frac{a-b}{2b}\right)}^{2}-\left\{{\left(\frac{a-b}{2b}\right)}^{2}+\frac{{\sigma }_{0}}{b}\right\}}]$$
(A.12)

We know from integration, \(\int \frac{\text{d}x}{{x}^{2}-{a}^{2}}=\frac{1}{2a}\text{ln}\frac{x-a}{x+a}+constant\)

$$=\frac{RT}{16{F}^{2}}\times \left(\frac{{A}_{1}a}{\Delta x}\right){\left[\text{ln}\left({\sigma }_{\rm tot}\right)+\frac{2b{\sigma }_{0}-a\left(b-a\right)}{-ab}\times \frac{1}{2\sqrt{{\left(\frac{a-b}{2b}\right)}^{2}+\frac{{\sigma }_{0}}{b}}}\text{ln}\frac{y+\frac{a-b}{2b}-\sqrt{{\left(\frac{a-b}{2b}\right)}^{2}+\frac{{\sigma }_{0}}{b}}}{y+\frac{a-b}{2b}-\sqrt{{\left(\frac{a-b}{2b}\right)}^{2}+\frac{{\sigma }_{0}}{b}}}\right]}_{\rm int}^{\rm bulk}$$
(A.13)
$$\frac{\text{d}{n}_{\rm FeO}}{\text{d}t}\left(\frac{\text{mol}}{{\text{m}}^{2}-\text{s}}\right)=\frac{RT}{16{F}^{2}}\times \left(\frac{{A}_{1}a}{\Delta x}\right){\left[\text{ln}\left({\sigma }_{\rm tot}\right)-\frac{a\left(a-b\right)+2b{\sigma }_{0}}{a\sqrt{{\left(a-b\right)}^{2}+4b{\sigma }_{0}}}\text{ln}\frac{2by+\left(a-b\right)-\sqrt{{\left(a-b\right)}^{2}+4b{\sigma }_{0}}}{2by+\left(a-b\right)+\sqrt{{\left(a-b\right)}^{2}+4b{\sigma }_{0}}}\right]}_{\rm int}^{\rm bulk}$$
(A.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, J., Coley, K.S. Decarburization of Iron Carbon Droplets with Oxidizing Slag: An Experimental Study to Understand the Effect of Ionic and Electronic Conductivity on Decarburization Kinetics. Metall Mater Trans B 53, 770–785 (2022). https://doi.org/10.1007/s11663-022-02448-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02448-y

Navigation