Skip to main content
Log in

Analysis of Factors that Influence the Evolution of Molten Droplets During Electroslag Remelting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A phase-field multiphase mathematical model was established using finite-element methods to simulate the formation and separation phenomena of metal droplets in the slag pool of an electroslag remelting process, and the numerical model was verified by a physical model. The effect of melting rate, steel-slag interfacial tension, slag viscosity and filling ratio on the evolutionary behavior of molten droplets was investigated. Evolution of the first molten drop was divided into three steps: formation, necking and fracturing. The fracture time of the first molten drop increased with an increase in electrode melting rate, interfacial tension and filling ratio, increased initially and then decreased with an increase in slag viscosity. The melting rate and slag viscosity had no significant effect on the shape change of the first drop in the melt droplet evolution, and the change in interfacial tension and filling ratio had a significant effect on the shape change of the melt droplet evolution. The satellite drop formation and next round of melt drops showed a good relationship with the melting rate, interfacial tension and filling ratio and no significant relationship with the slag viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. X. Pan, J. Yang, J. Park, and H. Ono: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 1489–98.

    Article  CAS  Google Scholar 

  2. C. Pan, X. Hu, J. Zheng, P. Lin, and K. Chou: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 1499–1507.

    Article  CAS  Google Scholar 

  3. Z. Chen and H. Shen: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 200–09.

    Article  CAS  Google Scholar 

  4. H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Zhou: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 655–63.

    Article  Google Scholar 

  5. Y. Liu, Z. Zhang, G. Li, Q. Wang, L. Wang, and B. Li: Steel Res. Int., 2017, vol. 88, p. 1700058.

    Article  Google Scholar 

  6. Z.C. Sims, O.R. Rios, D. Weiss, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M.B. Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, and S.K. McCall: Mater Horiz., 2017, vol. 4, pp. 1070–78.

    Article  CAS  Google Scholar 

  7. X. Huang, B. Li, Z. Liu, M. Li, F. Qi, and S. Feng: Int. J. Heat Mass Transf., 2020, vol. 163, p. 120473.

    Article  Google Scholar 

  8. Y. Guo, Z. Xia, Z. Shen, Q. Li, C. Sun, T. Zheng, W. Ren, Z. Lei, and Y. Zhong: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 282–91.

    Article  Google Scholar 

  9. C. Shi, H. Wang, and J. Li: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1675–89.

    Article  Google Scholar 

  10. J. Wang, L. Zhang, T. Wen, Y. Ren, and W. Yang: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1521–31.

    Article  Google Scholar 

  11. Y. Guo, Z. Xia, Q. Li, M. Sun, W. Liu, S. Wang, Z. Shen, T. Zheng, B. Ding, and Y. Zhong: J. Mater. Sci. Technol., 2022, vol. 96, pp. 1–10.

    Article  Google Scholar 

  12. C. Sun, Y. Guo, Q. Li, Z. Shen, T. Zheng, H. Wang, W. Ren, Z. Lei, and Y. Zhong: Metals., 2020, vol. 10, p. 647.

    Article  CAS  Google Scholar 

  13. J. Chaulet, A. Kharicha, S. Charmond, B. Dussoubs, S. Hans, M. Wu, A. Ludwig, and A. Jardy: Metals., 2020, vol. 10, p. 490.

    Article  Google Scholar 

  14. Y. Dong, Z. Jiang, J. Fan, Y. Cao, D. Hou, and H. Cao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1475–88.

    Article  Google Scholar 

  15. W. Tong, W. Li, X. Zang, H. Li, Z. Jiang, and Y. Han: Metals., 2020, vol. 10, p. 386.

    Article  CAS  Google Scholar 

  16. H. Shi, M. Tu, Q. Chen, and H. Shen: Int. J. Heat Mass Transf., 2020, vol. 158, p. 119713.

    Article  Google Scholar 

  17. D. Hou, Z. Jiang, Y. Dong, Y. Li, W. Gong, and F. Liu: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 1885–97.

    Article  Google Scholar 

  18. J. Yu, F. Liu, Z. Jiang, C. Kang, K. Chen, H. Li, and X. Geng: Steel Res. Int., 2018, vol. 89, p. 1700481.

    Article  Google Scholar 

  19. X. Huang, B. Li, Z. Liu, X. Yang, and F. Tsukihashi: Int. J. Heat Mass Transf., 2019, vol. 135, pp. 1300–11.

    Article  Google Scholar 

  20. H. Wang, Y. Zhong, Q. Li, W. Li, W. Ren, Z. Lei, Z. Ren, and Q. He: ISIJ Int., 2017, vol. 57, pp. 2157–64.

    Article  CAS  Google Scholar 

  21. H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Ren: ISIJ Int., 2016, vol. 56, pp. 255–63.

    Article  CAS  Google Scholar 

  22. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek: Steel Res. Int., 2018, vol. 89, p. 1700100.

    Article  Google Scholar 

  23. J. Yu, Z. Jiang, F. Liu, K. Chen, H. Li, and X. Geng: ISIJ Int., 2017, vol. 57, pp. 1205–12.

    Article  CAS  Google Scholar 

  24. J. Yu, F. Liu, H. Li, Z. Jiang, K. Chen, and X. Geng: JOM., 2019, vol. 71, pp. 744–53.

    Article  Google Scholar 

  25. A. Kharicha, W. Schützenhöfer, A. Ludwig, and G. Reiter: Mater. Sci. Forum., 2010, vol. 649, pp. 229–36.

    Article  CAS  Google Scholar 

  26. Q. Wang, R. Lu, Z. Chen, G. Li, and Y. Yang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 649–63.

    Article  Google Scholar 

  27. A. Kharicha, A. Ludwig, and M. Wu: Mater. Sci. Eng. A., 2005, vol. 413, pp. 129–34.

    Article  Google Scholar 

  28. J. Yanke, K. Fezi, R.W. Trice, and M.J.M. Krane: Numer. Heat Transf. Part A., 2015, vol. 67, pp. 268–92.

    Article  Google Scholar 

  29. Z. Hou, Y. Dong, Z. Jiang, K. Yao, Y. Li, and Y. Gao: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 598–610.

    Article  Google Scholar 

  30. W. Liu, J. Liu, H. Zhao, S. Yang, and J. Li: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1–11.

    Google Scholar 

  31. W. Liu, S. Yang, J. Li, W. Feng, L. Zhu, and M.L. Free: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1542–46.

    Article  Google Scholar 

  32. Z. Zhang, W. Liu, and M.L. Free: J. Electrochem. Soc., 2019, vol. 167, p. 013532.

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their thanks for support by the National Natural Science Foundation of China (Grant Nos. 51734003, 51822401, 52074030 and 51874027) and the Fundamental Research Funds for the Central Universities (Grant no. FRF-TP-18-009C1).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Shufeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, W., Gao, J. et al. Analysis of Factors that Influence the Evolution of Molten Droplets During Electroslag Remelting. Metall Mater Trans B 53, 716–729 (2022). https://doi.org/10.1007/s11663-022-02447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02447-z

Navigation