Skip to main content
Log in

Dendritic Features of the Solidification Structure in a Large AA3004 Direct Chill (DC) Cast Ingot

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slices taken from the largest type of commercial DC casting ingot were examined to reveal its dendritic features to shed lights on the open questions in the literature related to the effect of grain refiners and the convection-induced floating grains on the final grain size distribution in a DC cast ingot. It is found that the ingot comprises globular equiaxed grains featuring coarse secondary dendrite arms and short primary dendrite arms except for a thin chill layer, about 1 mm thick, at its surfaces, featuring fully developed large equiaxed dendrites of long primary dendrite arms and many fine secondary dendrite arms. In the thin chill layer the secondary dendrite arm spacing is smaller by about two times but the grain size, surprisingly, is greater about two times than that in the globular grain zone. Huge floating grains exist at the boundary on the side of the globular grain zone, indicating dendritic fragments are spreading across the entire ingot except for the 1 mm thin chill zone. Such unique features are formed due to the thermal history of grains in the sump. The temperature range in which a floating grain can survive is analyzed and suggested to include temperatures slightly above the liquidus of the alloy. Theories associated with the effect of convection on the formation of dendrites are used to explain the dendritic features in ingots. It appears that the addition of grain refiners produces equiaxed grains only in the chill layer. In the globular grain zone, fragments or floating grains are responsible for the formation of equiaxed grains in DC cast ingots. Since DC casting is the most quiescent metal casting process, grain refinement mechanism associated with the fragmentation and multiplication of dendrites should be considered as dominant mechanisms in grain refining of alloy for gravity casting processes and solidification of an alloy under the influence of external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.M. Lewis and J. Savage: Metall. Rev., 1956, vol. 1, pp. 65–116.

    CAS  Google Scholar 

  2. Q. Han, S. Viswanathan, D.L. Spainhower, and S.K. Das: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 2908–10.

    CAS  Google Scholar 

  3. D.A. Granger: Light Metals 1998, TMS (The Minerals, Metals, & Materials Society), 1998, pp. 941–52.

  4. K. Buxmann and E. Gold: J. Met., 1982, vol. 34, pp. 28–34.

    CAS  Google Scholar 

  5. J. Ni and F.P. Incropera: Int. J. Heat Mass Transf., 1995, vol. 38(7), pp. 1271–84.

    CAS  Google Scholar 

  6. C. Vreeman, M. Krane, and F. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.

    CAS  Google Scholar 

  7. C. Vreeman and F. Incropera: Int. J Heat Mass Transf., 2000, vol. 43, pp. 687–704.

    CAS  Google Scholar 

  8. D.G. Eskin, J. Zuidema Jr., V.I. Savran, and L. Katgerman: Mater Sci. Eng. A., 2004, vol. 384A, pp. 232–44.

    Google Scholar 

  9. D.G. Eskin, V.I. Savran, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1965–76.

    CAS  Google Scholar 

  10. A.M. Glenn, S.P. Russo, and P.J.K. Paterson: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1513–23.

    CAS  Google Scholar 

  11. M.G. Chu: Metall. Trans. A., 1992, vol. 23A, pp. 2323–5.

    CAS  Google Scholar 

  12. R. Nadella, D. Eskin, and L. Katgerman: Mater. Sci. Forum., 2006, vol. 519–521, pp. 1841–6.

    Google Scholar 

  13. Z. Long, Q. Han, S. Viswanathan, S. Ningileri, and S. Das: Light Metals 2005, TMS (The Minerals, Metals, & Materials Society), 2005, pp. 1057-1062.

  14. A. Cibula: J. Inst. Met., 1949, vol. 76, pp. 321–60.

    CAS  Google Scholar 

  15. D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247–60.

    CAS  Google Scholar 

  16. D. Warrington and D.G. McCartney: Cast Met., 1990, vol. 3(4), pp. 202–208.

    Google Scholar 

  17. M. Easton, J. Grandfield, and D. StJohn: Mater. Sci. Forum., 2006, vol. 519–21, pp. 1675–80.

    Google Scholar 

  18. V. Plochikhine, V. Karkhin, and H.W. Bergman: in Continuous Casting. K. Ehrke and W. Schneider, eds., Wiley-VCH, Weiheim, 2000, pp. 109–14.

    Google Scholar 

  19. H. Nagaumi: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 49–57.

    CAS  Google Scholar 

  20. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: https://bura.brunel.ac.uk/bitstream/2438/8341/2/Fulltext.pdf.

  21. H. Dong and P. Lee: Acta Mater., 2005, vol. 53, pp. 659–68.

    CAS  Google Scholar 

  22. S.R. Wagstaff and A. Allianore: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 2114–22.

    Google Scholar 

  23. A Pakanati, M M’Hamdi, H Combeau, and M Založnik: Mater. Sci. Eng. 2020, vol. 861, https://doi.org/10.1088/1757-899X/861/1/012040.

  24. V.I. Dobatkin: Continuous Casting and Casting Properties of Alloys, Oborongiz, Moscow, 1948.

    Google Scholar 

  25. H. Yu and D.A. Granger: in Int. Conf. Aluminum Alloys—Their Physical and Mechanical Properties, Charlottesville, Virginia. E.A. Starke and T.H. Sanders, eds., EMAS, Warley, 1986, pp. 17–29.

    Google Scholar 

  26. M.G. Chu, and J.E. Jacoby: Light Metals 1990. TMS (The Minerals, Metals, & Materials Society), 1990, pp. 923–30.

  27. Q. Han and A. Hellawell: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 169–73.

    CAS  Google Scholar 

  28. X. Wan, Q. Han, and J.D. Hunt: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 751–55.

    CAS  Google Scholar 

  29. Q. Han: Metall. Mater. Trans. A, 2021, https://doi.org/10.1007/s11661-021-06382-7.

    Article  Google Scholar 

  30. J.E. Hillard and J.W. Cahn: Trans. Metall. Soc. AIME, 1961, vol. 221, pp. 344–52.

    Google Scholar 

  31. T.Z. Kattamis, J.C. Coughlin, and M.C. Flemings: Trans. AIME., 1967, vol. 239, pp. 1504–11.

    CAS  Google Scholar 

  32. J.J. Reeves and T.Z. Kattamis: Scr. Metall., 1971, vol. 5, pp. 223–29.

    CAS  Google Scholar 

  33. K.H. Chen and T.Z. Kattamis: Z. Metallkd., 1970, vol. 61, pp. 475–79.

    Google Scholar 

  34. Q. Han, H. Hu, and X. Zhong: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 1185–87.

    CAS  Google Scholar 

  35. Q. Han and J. Zhang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1795–1804.

    Google Scholar 

  36. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward III.: Trans. Metall. Soc. AIME., 1966, vol. 236, pp. 149–58.

    CAS  Google Scholar 

  37. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    CAS  Google Scholar 

  38. M. Easton and D. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1613–23.

    CAS  Google Scholar 

  39. W.C. Winegard and B. Chalmers: Trans. ASM, 1954, vol. 46, pp. 1214–23.

    Google Scholar 

  40. C. Vian, C. Kuntz, C. Kibbey, Q. Han, and Y. Chen: Int. J. Metalcast., 2021, https://doi.org/10.1007/s40962-021-00647-y.

    Article  Google Scholar 

  41. G. Chai, L. Bäckerud, and L. Arnberg: Mater. Sci. Technol., 1995, vol. 11, pp. 1099–1103.

    CAS  Google Scholar 

  42. J. Hutt and D. Stjohn: Int. J. Cast Met. Res., 1998, vol. 11, pp. 13–22.

    CAS  Google Scholar 

  43. R. Genders: J. Inst. of Met., 1926, vol. 35, pp. 259–65.

    Google Scholar 

  44. B. Chalmers: J. Aust. Inst. Met., 1962, vol. 8, pp. 255–60.

    Google Scholar 

  45. A. Cibula: J. Inst. Met., 1951–52, vol. 80, pp. 1–16.

  46. I. Maxwell and A. Hellawell: Acta Metall., vol. 3, pp. 229–37.

  47. Q. Han and J.D. Hunt: J. Cryst. Growth., 1994, vol. 140, pp. 406–13.

    CAS  Google Scholar 

  48. Q. Han and J.D. Hunt: J. Cryst. Growth, 1995, vol. 152, pp. 221–27.

    CAS  Google Scholar 

  49. Q. Han and J.D. Hunt: ISIJ Int., 1995, vol. 35(8), pp. 693–9.

    CAS  Google Scholar 

  50. Y. Liu and Q. Han: Acta Mater., 2021, p. 116956. https://doi.org/10.1016/j.actamat.2021.116956.

  51. L.A. Tarshis, J.L. Walker, and J.W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589–97.

    CAS  Google Scholar 

  52. Q. Han and H. Hu: Acta Metall. Sin., 1989, vol. 2(2), pp. 94–98.

    Google Scholar 

  53. J. Spittle and S. Sadli: Mater. Sci. Technol., 1995, vol. 11, pp. 533–37.

    CAS  Google Scholar 

  54. H. Xu, L.D. Xu, S.J. Zhang, and Q. Han: Scr. Mater., 2006, vol. 54, pp. 2191–96.

    CAS  Google Scholar 

  55. M.A. Kearns and P.S. Cooper: Mater. Sci. Technol., 1997, vol. 13, pp. 650–54.

    CAS  Google Scholar 

  56. A. Ohno, T. Motegi, and H. Soda: Trans. ISIJ, 1971, vol. 11, pp. 18–26.

    CAS  Google Scholar 

  57. E. Liotti, C. Arteta, A. Zisserman, A. Lui, V. Lempitsky, and P. Grant: Sci. Adv., 2018, vol. 4, pp. 1–10.

    Google Scholar 

  58. Y. Wang, S. Jia, M. Wei, L. Peng, Y. Wu, and X. Liu: J. Magn. Alloys., 2020, vol. 8, pp. 396–413.

    CAS  Google Scholar 

  59. H. Neumann-Heyme, N. Shevchenko, Z. Lei, K. Eckert, O. Keplinger, J. Grenzer, C. Beckermann, and S. Eckert: Acta Mater., 2018, vol. 146, pp. 176–86.

    CAS  Google Scholar 

  60. N. Shevehenko, H. Neumann-Heyme, C. Pickmann, E. Schaber-Zimmermann, G. Zimmermann, K. Eckert, and S. Eckert: IOP Conf. Series: Mater. Sci. and Eng., 2017, vol. 228, p. 012005. https://doi.org/10.1088/1757-899X/228/1/012.

  61. R.H. Mathiesen, L. Arnberg, P. Bleuet, and A. Somogyi: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2515–24.

    CAS  Google Scholar 

  62. G. Zimmermann, C. Pickmann, M. Hamacher, E. Schaberger-Zimmermann, H. Neumann-Heyme, K. Eckert, and S. Eckert: Acta. Mater., 2017, vol. 126, pp. 236–50.

    CAS  Google Scholar 

  63. Q. Han: Scr. Mater., 2006, vol. 55, pp. 871–74.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the United States Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Industrial Technologies, Industrial Materials for the Future (IMF) Program, Materials Processing Laboratory Users (MPLUS) Facility, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. The author thanks Logan Aluminum, Inc., for providing the ingot slices, Mr. E.C. Hatfield for the handling and etching the ingot slices, and Mr. J. Mayotte for optical metallography.

Conflict of interest

The corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q. Dendritic Features of the Solidification Structure in a Large AA3004 Direct Chill (DC) Cast Ingot. Metall Mater Trans B 53, 786–797 (2022). https://doi.org/10.1007/s11663-022-02423-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02423-7

Navigation