Skip to main content
Log in

Recycling of Vanadium-Containing BOF Slag with Agitation and Heap Leaching

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article describes one of the solutions to the problem associated with the utilization of metallurgical wastes and presents a high-efficiency method for recycling a large amount of vanadium-containing BOF slag with heap leaching by sulfuric acid. The leaching degree of vanadium from vanadium-containing BOF slag was 98.5 pct by agitation leaching and 71 pct by leaching in a percolator column. The diffusion through the slag boundary layer is a limiting factor that determines the vanadium leaching efficiency. The authors carried out the experiment to determine the time required for the solution to diffuse into the vanadium-containing BOF slag. In this article, the authors determined the influence of the pause duration between irrigations of slag in the percolator column. The slag, both before leaching and after, was tested using the one-stage batch test and the standard toxicity characteristic leaching procedure extraction test to compare their leachate capacity in relation to vanadium. The composition and structural features of vanadium-containing BOF slag were investigated by X-ray diffraction, scanning electron microscopy, and an energy-dispersive x-ray analysis console. According to these data, vanadium is present in all phases of the slag in different concentrations. The process of heap leaching carried out in a percolation column in the laboratory-scale experiment can be considered selective, since the leaching degree of vanadium is higher than the leaching degree of other slag components, except for aluminum.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.R. Moskalyk and A.M. Alfantazi: Miner. Eng., 2003, 16, vol. 16.

  2. T. Itoh, T. Kanno, A. Ikeuchi, K. Kawai, T. Hara, and N. Tokuda: SAE Tech. Pap., 1999, pp. 130–5.

  3. P. Ning, X. Lin, X. Wang, and H. Cao: Chem. Eng. J., 2016, vol. 301, pp. 132–8.

    Article  CAS  Google Scholar 

  4. M. Imtiaz, M.S. Rizwan, S. Xiong, H. Li, M. Ashraf, S.M. Shahzad, M. Shahzad, M. Rizwan, and S. Tu: Environ. Int., 2015, vol. 80, pp. 79–88.

    Article  CAS  Google Scholar 

  5. A. Bhatnagar, A.K. Minocha, D. Pudasainee, H.K. Chung, S.H. Kim, H.S. Kim, G. Lee, B. Min, and B.H. Jeon: Chem. Eng. J., 2008, vol. 144, pp. 197–204.

    Article  CAS  Google Scholar 

  6. K. Lundkvist, M. Brämming, M. Larsson, and C. Samuelsson: J. Clean. Prod., 2013, vol. 47, pp. 43–51.

    Article  CAS  Google Scholar 

  7. Feature, 2007.

  8. X.S. Li and B. Xie: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 595–601.

    Article  CAS  Google Scholar 

  9. Y. Wei, L. Du, X. Deng, X. Liu, X. Mei, and D. Shi: Chem. Eng. J., 2018, vol. 354, pp. 53–61.

    Article  CAS  Google Scholar 

  10. Z. Zhao, L. Cui, Y. Guo, H. Li, and F. Cheng: Chem. Eng. J., 2020, vol. 381, p. 122699.

    Article  CAS  Google Scholar 

  11. K. Meschke, R. Hofmann, R. Haseneder, and J.U. Repke: Chem. Eng. J., 2020, vol. 380, p. 122476.

    Article  CAS  Google Scholar 

  12. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi, and E. Vahidi: Hydrometallurgy., 2010, vol. 102, pp. 14–21.

    Article  CAS  Google Scholar 

  13. Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie: Int. J. Miner. Process., 2014, vol. 133, pp. 105–11.

    Article  CAS  Google Scholar 

  14. J. Xiang, Q. Huang, X. Lv, and C. Bai: J. Clean. Prod., 2018, vol. 170, pp. 1089–101.

    Article  CAS  Google Scholar 

  15. X. Zhu, Y. Zhang, J. Huang, T. Liu, and Y. Wang: Int. J. Miner. Process., 2012, vol. 114–117, pp. 1–6.

    Google Scholar 

  16. A. Kovalev, D. Wainstein, V. Vakhrushev, A. Volkov, and U. Kologrieva: Materials., 2019, https://doi.org/10.3390/ma12213578.

    Article  Google Scholar 

  17. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  18. H.Y. Li, K. Wang, W.H. Hua, Z. Yang, W. Zhou, and B. Xie: Hydrometallurgy., 2016, vol. 160, pp. 18–25.

    Article  CAS  Google Scholar 

  19. M. Goto, B.C. Roy, and T. Hirose: J. Supercrit. Fluids., 1996, vol. 9, pp. 128–33.

    Article  CAS  Google Scholar 

  20. D.P. Ordinartsev, A.V. Sviridov, S.S. Naboichenko, and V.V. Yurchenko: Metallurgist., 2018, https://doi.org/10.1007/s11015-018-0586-1.

    Article  Google Scholar 

  21. W. Li, Y. Zhang, T. Liu, J. Huang, and Y. Wang: Hydrometallurgy., 2013, vol. 131–132, pp. 1–7.

    Article  Google Scholar 

  22. E.M. Rabinovitch, V.G. Mizin, M.E. Rabinovitch, T.P. Sirina, T.I. Krasnenko, 2005. Ekaterinburg: UB RAS

  23. H. Peng: J. Environ. Chem. Eng., 2019, vol. 7, p. 103313.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was carried out according to the state assignment for IMET UB RAS using the equipment of the Collaborative Usage Center “Ural-M.” The author also thanks Dr. B.D. Khalezov for a very helpful discussion of the heap leaching method.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Ordinartsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 7, 2021; accessed November 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordinartsev, D., Krasheninin, A., Petrova, S. et al. Recycling of Vanadium-Containing BOF Slag with Agitation and Heap Leaching. Metall Mater Trans B 53, 1162–1172 (2022). https://doi.org/10.1007/s11663-021-02408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02408-y

Navigation