Skip to main content
Log in

Macroscopic Mechanistic Modeling for the Prediction of Mold Slag Exposure in a Continuous Casting Mold

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Argon gas injection into a continuous casting mold facilitates many factors related to smooth and long casting sequences by reducing nozzle clogging, improvements in steel cleanliness by inclusion floatation, etc. However, an unoptimized gas flow rate may deteriorate the cast slab quality through mold slag exposure, slag entrapment into the solidifying shell, etc. Formation of mold slag open eyes (MSOE) removes the protective slag layer to invite the issue of liquid steel reoxidation. Different MSOE formations were observed at varying flow conditions through physical modeling experiments. Total MSOE area helps in determining the extent of reoxidation. This study aims to predict the dimensionless MSOE area by developing a macroscopic mechanistic model which results in a model equation in terms of a “densimetric Froude number (FrD,m)” and two unknown arbitrary constants. To close this equation, FrD,m is obtained by evaluating its unknown characteristic, i.e., mold plume velocity (Ump). It was calculated at different gas flow rates (Qg) using shadow-imaging technique applied on a 1:7 scale water model. Average velocity of bubbles (approximated as Ump) in plume was estimated by individual bubble tracking using an ImageJ macro validated against the manually calculated Ump. Then, FrD,m was calculated using both manual and automatic Ump values. In separate water modeling experiments, total MSOE areas at same Qg values were obtained. Then, dimensionless MSOE area was calculated by dividing this total MSOE area by total plume area. Dimensionless area was correlated with manual and automatic FrD,m. This correlation is compared with the model equation, and arbitrary constants were obtained to close the model equation. Finally, a zone-wise mean bubble size analysis was introduced to strengthen the assumption regarding the probable location of MSOE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Zhongqiu Liu, Baokuan Li, Alexander Vakhrushev, Menghuai Wu, and Andreas Ludwig, Physical and Numerical Modeling of Exposed Slag Eye in Continuous Casting Mold using Euler–Euler Approach, steel research int. 2019, 90, 1800117, Copyright Wiley-VCH GmbH. Reproduced with permission

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A mp :

Area of mold plume

A ms :

Area of mold slag open eye (MSOE)

P a :

Pressure of control volume from top

P b :

Pressure of control volume from bottom

j :

Unit vector in the y direction

N :

Unit normal vector

G :

Gravitational acceleration

U o :

Velocity of downward flow in control volume (mm/s)

U i :

Horizontal velocity of liquid steel in control volume (mm/s)

U mp :

Mold plume velocity (mm/s)

T :

Time bubble spent in changing its position

V I :

Indicative gas volume in zone 1

V II :

Indicative gas volume in zone 2

V III :

Indicative gas volume in zone 3

V T :

Total indicative gas volume

Θ :

Angle of downward flow from vertical

W LS :

Weight of liquid steel in control volume

W ms :

Weight of mold slag in control volume

ρ LS :

Density of liquid steel

ρ ms :

Density of the mold slag

h :

Height of slag in control volume

v x :

Velocity of bubble in x-direction

v y :

Velocity of bubble in y-direction

Δx :

Change in position of bubble in x-direction

Δy :

Change in position of bubble in y-direction

λ :

Model scale factor

L m :

Characteristic length of the model

L p :

Characteristic length of the prototype

ρ Ar ,1550 °C :

Density of argon at 1550 °C

ρ Ar ,25 °C :

Density of argon at 25 °C

ρ Air ,25 °C :

Density of air at 25 °C

ρ steel, 1550 °C :

Density of liquid steel at 1550 °C

ρ water ,25 °C :

Density of water at 25 °C

v Ar,1550 °C :

Velocity of Ar at 1550 °C

v Air,25 °C :

Velocity of Air at 25 °C

Q Ar,1550 °C :

Gas flow rate of argon at 1550 °C

Q Ar,25 °C :

Gas flow rate of argon at 25 °C

Q Air,25 °C :

Gas flow rate of air at 25 °C

Q l,m :

Liquid flow rate for model

Q l,p :

Liquid flow rate for prototype

T Ar,1550 °C :

Temperature of argon at 1550 °C

T Ar,25 °C :

Temperature of argon at 25 °C

Fr D,m :

Densimetric Froude number

\({A}_{\text{ms}}^{T}\) :

Total MSOE area

\({A}_{\text{ms}}^{D}\) :

Dimensionless MSOE area

U p :

Plume velocity

M :

Final position of the bubble

N :

Track number

References

  1. Ergolines lab s.r.l, MPF, automatic mold powder, feeder system for billet, bloom and slab casters, https://www.ergolines.it/products/mpf/?str=1

  2. S. Pendleton, Mold Powder Feeder, 2007, Google Patents, US20070034642A1,

  3. H. Nakajima, Powder feeder in continuous casting, 1991, Google Patents, US5067553A

  4. Z. Liu, Z. Sun, and B. Li: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 1248–67.

    Article  Google Scholar 

  5. Z. Liu, B. Li, M. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53(3), pp. 484–92.

    Article  CAS  Google Scholar 

  6. H. Tanaka, H. Kuatori, and R. Nishihara: Tetsu-to-Hagane., 1992, vol. 78, pp. 761–6.

    Article  CAS  Google Scholar 

  7. G. Reiter and K. Schwerdtfeger: ISIJ Int., 1992, vol. 32, pp. 57–65.

    Article  CAS  Google Scholar 

  8. X. Li, B. Li, Z. Liu, R. Niu, Y. Liu, C. Zhao, C. Huan, H. Qiao, and T. Yuan: Metals., 2019, vol. 9, p. 7.

    Article  CAS  Google Scholar 

  9. Z. Liu, B. Li, A. Vakhrushev, M. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.

    Article  Google Scholar 

  10. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B., 1999, vol. 30B, pp. 411–8.

    Article  CAS  Google Scholar 

  11. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B., 2000, vol. 31B, pp. 461–8.

    Article  CAS  Google Scholar 

  12. Subagyo, G.A. Brooks, and G.A. Irons: ISIJ Int., 2003, vol. 43(2), pp. 262–3.

    Article  CAS  Google Scholar 

  13. M. Iguchi, K.I. Miyamoto, S. Yamashita, D. Iguchi, and M. Zeze: ISIJ Int., 2004, vol. 44(3), pp. 636–8.

    Article  CAS  Google Scholar 

  14. D. Mazumdar and J.W. Evans: Metall. Mater. Trans. B., 2004, vol. 35B, pp. 400–4.

    Article  CAS  Google Scholar 

  15. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 763–72.

    Article  CAS  Google Scholar 

  16. Z.Q. Liu, L.M. Li, and B.K. Li: ISIJ Int., 2017, vol. 57, pp. 1971–9.

    Article  CAS  Google Scholar 

  17. C.A. Llanos, S. Garcia, J.A. Ramos-Banderas, J.D.J. Barreto, and G. Solorio: ISIJ Int., 2010, vol. 50, pp. 396–402.

    Article  CAS  Google Scholar 

  18. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw: Miner. Eng., 2013, vol. 46, p. 16.

    Article  Google Scholar 

  19. H. Liu, Z. Qi, and M. Xu: Steel Res. Int., 2011, vol. 82, pp. 440–8.

    Article  CAS  Google Scholar 

  20. L.M. Li, B.K. Li, and Z.Q. Liu: ISIJ Int., 2017, vol. 57, pp. 1980–9.

    Article  CAS  Google Scholar 

  21. R.D. Morales, F.A.C. Hurtado, and K. Chattopadhyay: ISIJ Int., 2019, vol. 59(7), pp. 1224–33.

    Article  CAS  Google Scholar 

  22. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B., 2015, vol. 46B, pp. 191–8.

    Article  Google Scholar 

  23. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Fabritius, J. Savolainen, M. Li, and L. Shao: Metals., 2019, https://doi.org/10.3390/met9101048.

    Article  Google Scholar 

  24. K. Chattopadhyay, M. Hasan, M. Isac, and R.I.L. Guthrie: Metall. Mater. Trans. B., 2010, vol. 41B, pp. 225–33.

    Article  CAS  Google Scholar 

  25. S. Chatterjee and K. Chattopadhyay: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 3099–114.

    Article  Google Scholar 

  26. S. Chatterjee, D. Li, and K. Chattopadhyay: Steel Res. Int., 2017, vol. 88, p. 9. https://doi.org/10.1002/srin.201600436.

    Article  CAS  Google Scholar 

  27. B.G. Thomas, A. Dennisov and H. Bai, ISS 80th Steelmaking Conf. 1997, pp. 375–84

  28. H. Bai and B.G. Thomas: Metall. Mater. Trans. B., 2001, vol. 32B, pp. 1143–59.

    Article  CAS  Google Scholar 

  29. R. Sanchez-Perez, R.D. Morales, M. Diaz Cruze, O. Olivares-Xometl, and J. Palafox-Ramos: ISIJ Int., 2003, vol. 43(5), pp. 637–46.

    Article  CAS  Google Scholar 

  30. R. Sánchez-pérez, R.D. Morales, L. García-Demedices, J. Palafox Ramos, and M. Díaz-Cruz: Metall. Mater. Trans. B., 2004, vol. 35B, p. 85.

    Article  Google Scholar 

  31. A.R. Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow., 2005, vol. 31, pp. 643–65.

    Article  Google Scholar 

  32. Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow., 2016, vol. 79, pp. 190–201.

    Article  CAS  Google Scholar 

  33. S.M. Cho, B.G. Thomas, and S.H. Kim: ISIJ Int., 2018, vol. 58(8), pp. 1443–52.

    Article  CAS  Google Scholar 

  34. A. Srivastava, R. Wang, S.K. Dinda, and K. Chattopadhyay: Mach. Learn. Appl., 2021, https://doi.org/10.1016/j.mlwa.2021.100180.

    Article  Google Scholar 

  35. F. Liu, H. Zhou, L. Zhang, C. Ren, J. Zhang, Y. Ren, and W. Chen: Steel Res. Int., 2021, https://doi.org/10.1002/srin.202100067.

    Article  Google Scholar 

  36. O. Reynolds: The Sub-mechanics of the Universe, vol. 3, Cambridge University Press, Cambridge, 1903.

    Google Scholar 

  37. J.E. Marsden and A.J. Tromba: Vector Calculus, 5th ed. W.H. Freeman, New York, 2003.

    Google Scholar 

  38. L.G. Leal: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  39. W. Chen, Y. Ren, L. Zhang, and P.R. Scheller: JOM., 2019, vol. 71, p. 1158. https://doi.org/10.1007/s11837-018-3255-8.

    Article  CAS  Google Scholar 

  40. S.H. Kim, R.J. Fruehan, and R.I.L. Guthrie, in Proc. Steelmak. Conf. (1986), pp. 107–18.

  41. M. Peranandhanthan and D. Mazumdar: ISIJ Int., 2010, vol. 50, pp. 1622–31.

    Article  CAS  Google Scholar 

  42. M. Bielnicki and J. Jowsa: Steel Res. Int., 2018, https://doi.org/10.1002/srin.201800110.

    Article  Google Scholar 

  43. X. Jin, D.F. Chen, X. Xie, J. Shen, and M. Long: Steel Res. Int., 2013, vol. 84, pp. 31–9.

    Article  CAS  Google Scholar 

  44. A. Srivastava and K. Chattopadhyay: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1279–93. https://doi.org/10.1007/s11663-021-02090-0.

    Article  CAS  Google Scholar 

  45. A. Asgarian, Z. Yang, Z. Tang, M. Bussmann, and K. Chattopadhyay: Exp. Fluids., 2020, vol. 61, p. 14. https://doi.org/10.1007/s00348-019-2847-6.

    Article  Google Scholar 

  46. A. Srivastava, R. Wang, D. Li, K. Chattopadhyay, AISTech 2020, Proc. Iron & Steel Technol. Conf., 2020, https://doi.org/10.33313/380/085

  47. A. Srivastava, S. K. Dinda, K. Chattopadhyay, J. Sengupta, AISTech2021, Proc. of the Iron & Steel Technol. Conf., 2021, https://doi.org/10.33313/382/172

  48. S.K. Dinda, A. Srivastava, K. Chattopadhyay, J. Sengupta, AISTech 2021, Proc. of the iron & steel technology conference (2021), https://doi.org/10.33313/382/171

  49. F. Tiago and W. Rasband: ImageJ User Guide IJ., 2012, vol. 1, p. 46r.

    Google Scholar 

  50. N. Stuurman and J. Schindelin, https://imagej.net/MTrack2, Accessed 29 Apr 2017

  51. G. Ebneth and W. Pluschkell: Steel Res., 1985, vol. 56, pp. 513–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), the Association of Iron and Steel Technology Foundation Steel Professorship program and the Dean’s Catalyst Professorship at the University of Toronto for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chattopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 15, 2021, accepted November 19, 2021.

Appendix

Appendix

ImageJ macro code for automatic measurement of bubble velocity

filepath=File.openDialog("Select a File");

dir=File.getParent(filepath);

open(filepath);

name = File.nameWithoutExtension;

run("8-bit");

setAutoThreshold("IsoData");

//run("Threshold...");

setThreshold(0, 139);

//setThreshold(0, 139);

setOption("BlackBackground", false);

run("Convert to Mask", "method=IsoData background=Light");

run("Fill Holes", "stack");

run("Watershed", "stack");

trackpara = "minimum=50 maximum=50000 maximum_=100 minimum_=1 save display show show_0 show_1 save=" + dir + File.separator + name+".csv";

run("MTrack2 ", trackpara);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Chattopadhyay, K. Macroscopic Mechanistic Modeling for the Prediction of Mold Slag Exposure in a Continuous Casting Mold. Metall Mater Trans B 53, 1018–1035 (2022). https://doi.org/10.1007/s11663-021-02396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02396-z

Navigation