Skip to main content
Log in

Surface Tension Prediction of Multicomponent Slags of the CaO–SiO2–Al2O3–FeO–Fe2O3 System Based on Microstructure Analysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The proper understanding and description of the surface tension of melt are important to the slag design in metal smelting. Aiming at this issue, a structure-related model was developed to predict the surface tension of the CaO–SiO2–Al2O3–FeO–Fe2O3 system. In the present work, the melt structures of quinary slags were measured by Raman spectroscopy, and the role of each component and the transformation mechanism of the surface tension were clearly elucidated. The content of the oxygen bond was calculated on the basis of the spectral results and enriched by the Lagrange interpolation method. Then, a new surface tension model depending on oxygen bond data was established. The prediction result showed that the current model could satisfactorily predict the surface tension of the CaO–SiO2–Al2O3–FeO–Fe2O3 system with overall average deviation of 8.05 pct and root-mean-square error of 0.0428 N m−1. The model was evaluated and compared with Tanaka’s model in the CaO–SiO2–Al2O3–FeO–Fe2O3 system and its subsystems. The comparison result showed that the current model had better agreement between the predicted values and the experimental data of the surface tension. The structure-related model developed in this work can achieve accurate prediction of the surface tensions for the steelmaking slag in the metal smelting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima: ISIJ Int., 2015, vol. 55, pp. 1299–304.

    Article  CAS  Google Scholar 

  2. Z.M. Yan, X.W. Lv, Z.D. Pang, X.M. Lv, and C.G. Bai: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1322–30.

    Article  Google Scholar 

  3. A.J. Queimada, L.I. Rolo, A.I. Caco, I.M. Marrucho, E.H. Stenby, and J.A.P. Coutinho: Fuel., 2006, vol. 85, pp. 874–7.

    Article  CAS  Google Scholar 

  4. Q. Shu, J.F. Wang, B.X. Peng, D.Z. Wang, and G.R. Wang: Fuel., 2008, vol. 87, pp. 3586–90.

    Article  CAS  Google Scholar 

  5. J.J. Xin, N. Wang, and M. Chen: ISIJ Int., 2020, vol. 60, pp. 2306–15.

    Article  CAS  Google Scholar 

  6. J.A.V. Bulter: Proc. R. Soc. Lond. Ser. A., 1932, vol. 135, pp. 348–75.

    Article  Google Scholar 

  7. R. Speiser, D.R. Poirier, and K. Yeum: Scripta Metall., 1987, vol. 21, pp. 687–92.

    Article  CAS  Google Scholar 

  8. K.S. Yeum, R. Speiser, and D.R. Poirier: Metall. Trans. B., 1989, vol. 20B, pp. 693–703.

    Article  CAS  Google Scholar 

  9. T. Tanaka, T. Kitamura, and I.A. Back: ISIJ Int., 2006, vol. 46, pp. 400–6.

    Article  CAS  Google Scholar 

  10. M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani: ISIJ Int., 2007, vol. 47, pp. 935–9.

    Article  CAS  Google Scholar 

  11. M. Nakamoto, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 211–6.

    Article  CAS  Google Scholar 

  12. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 38–43.

    Article  CAS  Google Scholar 

  13. C.C. Wu and G.G. Cheng: Shanghai Metal., 2014, vol. 36, pp. 33–41.

    CAS  Google Scholar 

  14. J.X. Li and J. Zhang: J. Univ. Sci. Technol. Beijing., 2000, vol. 22, pp. 512–4.

    CAS  Google Scholar 

  15. R. Zhang, Y. Wang, X. Zhao, J.X. Jia, C.J. Liu, and Y. Min: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2021–9.

    Article  Google Scholar 

  16. M.Y. Zhu: Modern Metallurgical Technology, Beijing Industrial Press, Beijing, 2011, p. 207.

    Google Scholar 

  17. S. Carić, L. Marinkov, and J. Slivka: Phys. Status Solidi., 1975, vol. 13, pp. 263–8.

    Article  Google Scholar 

  18. S. Hayashi and Y. Iguchi: ISIJ Int., 1994, vol. 34, pp. 555–61.

    Article  CAS  Google Scholar 

  19. R. Zhang, Y. Min, Y. Wang, X. Zhao, and C.J. Liu: ISIJ Int., 2020, vol. 60, pp. 212–9.

    Article  CAS  Google Scholar 

  20. W.D. Kingery: J. Am. Ceram. Soc., 1959, vol. 42, pp. 617–28.

    Article  CAS  Google Scholar 

  21. A.E. Gheribi and M.V. Roches: J. Non-Cryst. Solids., 2019, vol. 505, pp. 154–61.

    Article  CAS  Google Scholar 

  22. R.C. Weast: CRC Handbook of Chemistry and Physics, 83rd ed. Chemical Rubber Company, Boca Raton, 2002, pp. 1567–71.

    Google Scholar 

  23. J.Y. Choi and H.G. Lee: ISIJ Int., 2002, vol. 42, pp. 221–8.

    Article  CAS  Google Scholar 

  24. Verein Deutscher Eisenhüttenleute: Slag Atlas, 2nd ed. Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 403–47.

    Google Scholar 

  25. J.F. Elliott and M. Mounier: Can. Metall. Q., 1982, vol. 21, pp. 415–28.

    Article  CAS  Google Scholar 

  26. O.N. Fadeev, I.F. Khudyakpv, I.D. Kashcheev, and G.P. Kharitidi: Iz. Vuz. Tsvet. Metall., 1980, vol. 4, pp. 17–20.

    Google Scholar 

  27. E.L. Murav’eva, L.I. Kaplun, and V.I. Korotich: Adgez. Raps. Paika Mater., 1984, vol. 8, pp. 369–72.

    Google Scholar 

  28. Y. Li, Z.H. Jiang, M. Li, and T.P. Chen: 2011 AASRI Conf. on Artificial Intelligence and Industry Application, Male, Maldives, 2011, pp. 116–19

  29. P. Vadász, M. Havlík, and V. Danêk: Can. Metall. Q., 2000, vol. 39, pp. 143–52.

    Article  Google Scholar 

  30. I.A. Magidson, A.V. Basov, and N.A. Smirnov: Russ. Metall., 2009, vol. 7, pp. 631–5.

    Article  Google Scholar 

  31. K. Mukai and T. Ishikawa: J. Jpn. Inst. Met., 1981, vol. 45, pp. 147–54.

    Article  CAS  Google Scholar 

  32. C.F. Cooper and J.A. Kitchener: J. Iron Steel Inst., 1959, vol. 193, pp. 48–55.

    CAS  Google Scholar 

  33. K. Gunji and T. Dan: Trans. Iron Steel Inst. Jpn., 1974, vol. 14, pp. 162–9.

    Article  CAS  Google Scholar 

  34. K. Mukai and T. Ishikawa: Nippon Kinzoku Gakkaishi., 1981, vol. 45, pp. 147–54.

    CAS  Google Scholar 

  35. K. Nakajima: Tetsu-to-Hagané., 1994, vol. 80, pp. 383–8.

    Article  CAS  Google Scholar 

  36. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1–120.

    Article  CAS  Google Scholar 

  37. S.I. PoPel, V.I. Sokolov, and O.A. Esin: J. Phys. Chem., 1969, vol. 43, pp. 1782–4.

    Google Scholar 

  38. S.I. Popel and O.A. Esin: Z. Fiz. Khim., 1956, vol. 30, pp. 1193–201.

    CAS  Google Scholar 

  39. G.S. Ershov and E.A. Popova: Russ. J. Inorg. Chem., 1964, vol. 9, pp. 361–5.

    Google Scholar 

  40. M. Nakamoto, M. Hanao, T. Tanaka, M. Kawamoto, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 1075–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51974075 and 51904064), the Open Funds of State Key Laboratory of Metal Material for Marine Equipment and Application (Grant No. SKLMEA-K202001), and the China Postdoctoral Science Foundation (Grant No. 2020T130084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 21, 2021, accepted November 17, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Meng, Y., Wang, Z. et al. Surface Tension Prediction of Multicomponent Slags of the CaO–SiO2–Al2O3–FeO–Fe2O3 System Based on Microstructure Analysis. Metall Mater Trans B 53, 571–583 (2022). https://doi.org/10.1007/s11663-021-02394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02394-1

Navigation