Skip to main content
Log in

Effect of Microstructure Evolution of Iron-Rich Intermetallic Compounds on Mechanical Property of Al–7Si–0.3Mg Casting Alloy with Low Iron Content

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the effects of microstructure evolution of iron-rich intermetallic compounds on mechanical properties in Al–7Si–0.3Mg cast alloys with low iron content (0.1 to 0.3 wt pct) were investigated. A series of characterization methods was utilized to observe the microstructure of iron-rich intermetallic compounds. The results indicate that the dominant iron-rich intermetallic compounds change from π-AlMgFeSi phase with a script-like morphology to β-AlFeSi phase with a needle-like morphology as Fe content increased. Besides, the 2D/3D morphology of Fe-rich intermetallic compounds significantly changes with the increase of Fe content. In 0.3 wt pct Fe alloy, the π-AlMgFeSi phase with a layered structure and seaweed-like morphology forms on the surface of the β-AlFeSi phase with a platelet-like morphology, and the crystallographic orientation relationships were \(\left[ {1100} \right]_{\pi } \parallel \left[ {111} \right]_{\beta } \,{\text{and}}\,\left( {\overline{1} 10} \right)_{\beta } \parallel \left( {1\overline{2} 10} \right)_{\pi }\). In addition, the β-AlFeSi phase tends to nucleate in 0.2 wt pctFe alloy, while the growth of β-AlFeSi phase is boosted in 0.3 wt pctFe alloy. The sufficient growth of β-AlFeSi phase leads to the formation of the π-AlMgFeSi phase. Furthermore, the formation of the π-AlMgFeSi phase improves the mechanical properties of alloys. The microstructure morphology of π-AlMgFeSi phase formed on the surface of the platelet-like β-AlFeSi phase enhances the adhesive strength between the β-AlFeSi and the matrix and reduces the negative effects of Fe-rich intermetallic compounds on mechanical properties of Al–7Si–0.3Mg cast alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, and U. Vaidya: Annu. Rev. Mater. Res., 2019, vol. 49, pp. 327–59.

    Article  CAS  Google Scholar 

  2. K. Chanyathunyaroj, U. Patakham, S. Kou, and C. Limmaneevichitr: J. Alloys Compd., 2017, vol. 692, pp. 865–75.

    Article  CAS  Google Scholar 

  3. J.A. Taylor: Procedia Mater. Sci., 2012, vol. 1, pp. 19–33.

    Article  CAS  Google Scholar 

  4. L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 1737–49.

    Article  Google Scholar 

  5. O. Elsebaie, A.M. Samuel, and F.H. Samuel: J. Mater. Sci., 2011, vol. 46, pp. 3027–45.

    Article  CAS  Google Scholar 

  6. A. Gorny, J. Manickaraj, Z. Cai, and S. Shankar: J. Alloys Compd., 2013, vol. 577, pp. 103–24.

    Article  CAS  Google Scholar 

  7. Z. Li and H. Yan: J. Rare Earths., 2015, vol. 33, pp. 995–1003.

    Article  CAS  Google Scholar 

  8. S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Charact., 1994, vol. 33, pp. 99–112.

    Article  CAS  Google Scholar 

  9. C.J. Narducci, G.L. Brollo, R.H.M. de Siqueira, A.S. Antunes, and A.J. Abdalla: Sci. Rep., 2021, vol. 11, pp. 1–14.

    Article  Google Scholar 

  10. A.M. Samuel, Y. Zedan, H.W. Doty, V. Songmene, and F.H. Samuel: Int. J. Met., 2021, https://doi.org/10.1007/s40962-021-00613-8.

    Article  Google Scholar 

  11. M.H. Khan, A. Das, Z. Li, and H.R. Kotadia: Intermetallics., 2021, vol. 132, pp. 1–10.

    Article  Google Scholar 

  12. R. Qin, R.F. Yan, Z.P. Guan, G.Q. Zhang, J.W. Song, M.W. Ren, and J.G. Wang: Mater. Res. Express., 2021, vol. 8, p. 026518. https://doi.org/10.1088/2053-1591/abe5f0.

    Article  CAS  Google Scholar 

  13. L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski: Metall. Mater. Trans. A., 1995, vol. 26A, pp. 2161–74.

    Article  CAS  Google Scholar 

  14. T. Liu, M. Karkkainen, L. Nastac, V. Arvikar, I. Levin, and L.N. Brewer: Intermetallics., 2020, vol. 126, p. 106814.

    Article  CAS  Google Scholar 

  15. R. Wagner, M. Seleznev, H. Fischer, R. Ditscherlein, H. Becker, B.G. Dietrich, A. Keßler, T. Leißner, G. Wolf, A. Leineweber, U.A. Peuker, H. Biermann, and A. Weidner: Mater. Charact., 2021, vol. 174, p. 111039. https://doi.org/10.1016/j.matchar.2021.111039.

    Article  CAS  Google Scholar 

  16. S. Foss, C.J. Simensen, A. Olsen, and J. Tafto: Philos. Mag. Lett., 2002, vol. 82, pp. 681–6.

    Article  CAS  Google Scholar 

  17. S. Foss, A. Olsen, C.J. Simensen, and J. Taftø: Acta Crystallogr. B., 2003, vol. 59, pp. 36–42.

    Article  CAS  Google Scholar 

  18. R. Krendelsberger, P. Rogl, A. Leithe-Jasper, and C.J. Simensen: J. Alloys Compd., 1998, vol. 264, pp. 236–9.

    Article  CAS  Google Scholar 

  19. Q.G. Wang and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.

    Article  CAS  Google Scholar 

  20. Q.G. Wang: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 2887–99.

    Article  CAS  Google Scholar 

  21. J.A. Taylor, D.H. St John, J. Barresi, and M.J. Couper: Mater. Sci. Forum., 2000, vol. 331, pp. 277–82.

    Article  Google Scholar 

  22. L. Lu and A.K. Dahle: Metall. Mater. Trans. A., 2005, vol. 36A, p. 819.

    CAS  Google Scholar 

  23. J.Y. Yao and J.A. Taylor: J. Alloys Compd., 2012, vol. 519, pp. 60–6.

    Article  CAS  Google Scholar 

  24. X. Cao and J. Campbell: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 1425–35.

    Article  CAS  Google Scholar 

  25. J. Gan, J. Du, C. Wen, G. Zhang, M. Shi, and Z. Yuan: Int. J. Met., 2021, https://doi.org/10.1007/s40962-021-00580-0.

    Article  Google Scholar 

  26. S. Viswanathan: ASM Handbook:Volume 15 Casting, vol. 15, 2008.

  27. S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, and A.K. Dahle: Acta Mater., 2010, vol. 58, pp. 5370–80.

    Article  CAS  Google Scholar 

  28. C.M. Dinnis, J.A. Taylor, and A.K. Dahle: Scripta Mater., 2005, vol. 53, pp. 955–8.

    Article  CAS  Google Scholar 

  29. H. Becker, T. Bergh, P.E. Vullum, A. Leineweber, and Y. Li: Materialia., 2018, vol. 2, p. 89. https://doi.org/10.1016/j.mtla.2018.100198.

    Article  CAS  Google Scholar 

  30. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra: Int. J. Cast Met. Res., 2003, vol. 16, pp. 397–408.

    Article  CAS  Google Scholar 

  31. F. Mao, G. Yan, Z. Xuan, Z. Cao, and T. Wang: J. Alloys Compd., 2015, vol. 650, pp. 896–906.

    Article  CAS  Google Scholar 

  32. B. Li, H. Wang, J. Jie, and Z. Wei: Mater. Des., 2011, vol. 32, pp. 1617–22.

    Article  CAS  Google Scholar 

  33. Y.C. Tsai, C.Y. Chou, S.L. Lee, C.K. Lin, J.C. Lin, and S.W. Lim: J. Alloys Compd., 2009, vol. 487, pp. 157–62.

    Article  CAS  Google Scholar 

  34. S. Tahamtan, A.F. Boostani, and H. Nazemi: J. Alloys Compd., 2009, vol. 468, pp. 107–14.

    Article  CAS  Google Scholar 

  35. E. Çadırlı, U. Büyük, S. Engin, and H. Kaya: J. Alloys Compd., 2017, vol. 694, pp. 471–9.

    Article  Google Scholar 

  36. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad., 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51875062).

Author Contributions

JZ: Conceptualization, Investigation, Supervision. YG: Investigation, Data curation, Writing—review & editing. BX: Writing—review and editing. CG: Investigation, Data curation, Writing—original draft. YW: Writing—review and editing. QT: Methodology, Formal analysis.

Data Availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 30, 2021; accepted November 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Guo, Y., Xu, B. et al. Effect of Microstructure Evolution of Iron-Rich Intermetallic Compounds on Mechanical Property of Al–7Si–0.3Mg Casting Alloy with Low Iron Content. Metall Mater Trans B 53, 548–560 (2022). https://doi.org/10.1007/s11663-021-02390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02390-5

Navigation