Skip to main content
Log in

Study on Localized Corrosion Induced by Non-metallic Inclusions in OCTG Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The initiation and propagation of localized corrosion induced by typical composite inclusions in OCTG (oil country tubular goods) steels were investigated by continuous immersion test combining SEM-EDS detection and theoretical calculation. Localized corrosion induced by inclusions with spinel covered by calcium aluminate and CaS initiated at the dissolution of calcium aluminate and CaS. Most of spinel parts remained intact but would drop off, and fewer spinel were found dissolved. The reason for localized corrosion induced by inclusions in OCTG was discussed in the view of galvanic corrosion and chemical dissolution. The energy band structure of inclusions and potential difference between the inclusions and the Fe matrix was estimated based on first principles. The chemical dissolution of steel matrix and inclusions were analyzed based on thermodynamic calculation. The calculated results were in good agreement with experimental results. A schematic diagram of mechanism for localized corrosion induced by Mg–Ca–Al–O/S complex inclusions in OCTG steel was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Tang: World Metals, 2014.

  2. L.I. He-Lin, J.I. Ling-Kang, and L.H. Xie: J. Hebei Univ. Sci. Technol., 2006, vol. 27(1), pp. 1–5.

    Google Scholar 

  3. Y. Zhou: Steel Rolling., 2007, vol. 24(3), pp. 25–9.

    Google Scholar 

  4. H. Li, W. Tian, and X. Kuang: Steel Pipe., 2010, vol. 9(1), pp. 1–7.

    Google Scholar 

  5. H. Li, L. Han, and W. Zhang: Steel Pipe., 2009, vol. 38(1), pp. 1–9.

    Google Scholar 

  6. J. Fang, Y.H. Li, K.Y. Xie, X.Y. Zou, M.X. Zhou, and Z.X. Yuan: Appl. Mech. Mater., 2011, vol. 7(71–78), pp. 837–41.

    Google Scholar 

  7. B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang, and D. Chen: Nat. Commun., 2018, vol. 9(1), pp. 2559–68.

    CAS  Google Scholar 

  8. W. Tai and M. Chen: Corros. Sci., 2000, vol. 42, pp. 545–59.

    Google Scholar 

  9. Z. Szklarska-smialowska: Corrosion., 1972, vol. 28(10), pp. 388–96.

    CAS  Google Scholar 

  10. S. Zheng, C. Li, Y. Qi, L. Chen, and C. Chen: Corros. Sci., 2013, vol. 67(Supplement C), pp. 20–31.

    CAS  Google Scholar 

  11. L. Yue, L. Wang, and J. Han: J. Rare Earth., 2010, vol. 28(6), pp. 952–6.

    CAS  Google Scholar 

  12. I.I. Reformatskaya, I.G. Rodionova, Y.A. Beilin, L.A. Nisel’Son, and A.N. Podobaev: Prot. Met., 2004, vol. 405(5), pp. 447–52.

    Google Scholar 

  13. G. Wranglen: Corros. Sci., 1974, vol. 14(5), pp. 331–49.

    Google Scholar 

  14. C. Liu, R.I. Reynier, D. Zhang, Z. Liu, A. Lutz, and F. Zhang: Corros. Sci., 2018, vol. 138, pp. 96–104.

    CAS  Google Scholar 

  15. T.Y. Jin and Y.F. Cheng: Corros. Sci., 2011, vol. 53(2), pp. 850–3.

    CAS  Google Scholar 

  16. T. Wijesinghe and D.J. Blackwood: Corros. Sci., 2007, vol. 49(4), pp. 1755–64.

    CAS  Google Scholar 

  17. J. Yan, T. Li, Z. Shang, and H. Guo: Mater Charact., 2019, https://doi.org/10.1016/j.matchar.2019.109944.

    Article  Google Scholar 

  18. C. Man, C. Dong, K. Xiao, Q. Yu, and X. Li: Corrosion (Houston, TX)., 2017, vol. 74(4), pp. 312–25.

    Google Scholar 

  19. R. Avci, B.H. Davis, M.L. Wolfenden, I.B. Beech, and K. Lucas: Corros. Sci., 2013, vol. 76, pp. 267–74.

    CAS  Google Scholar 

  20. J. Torkkeli, T. Saukkonen, and H. Hanninen: Corros. Sci., 2015, vol. 96, pp. 14–22.

    CAS  Google Scholar 

  21. X. Zhang, W. Wei, L. Cheng, J. Liu, K. Wu, and M. Liu: Appl. Surf. Sci., 2019, vol. 475, pp. 83–93.

    CAS  Google Scholar 

  22. Y. Li, J. Liu, Y. Deng, X. Han, W. Hu, and C. Zhong: J. Alloys Compd., 2016, vol. 673, pp. 28–37.

    CAS  Google Scholar 

  23. C. Liu, Z. Jiang, J. Zhao, X. Cheng, Z. Liu, and D. Zhang: Corros. Sci., 2020, vol. 166, pp. 108463.1-108463.10.

    Google Scholar 

  24. C. Liu, X. Li, R.I. Revilla, T. Sun, and X. Li: Corros. Sci., 2021, https://doi.org/10.1016/j.corsci.2020.109150.

    Article  Google Scholar 

  25. M. Rohwerder and F. Turcu: Electrochim. Acta., 2008, vol. 53(2), pp. 290–9.

    Google Scholar 

  26. C. Liu, R.I. Revilla, D.Z. Liu, X. Li, and H. Terryn: Corros. Sci., 2017, vol. 129, pp. 82–90.

    CAS  Google Scholar 

  27. Y. Hou, G. Xiong, L. Liu, G. Li, and M. Guo: Scripta Mater., 2020, vol. 177, pp. 151–6.

    CAS  Google Scholar 

  28. S.J. Zheng, Y.J. Wang, B. Zhang, Y.L. Zhu, C. Liu, and P. Hu: Acta Mater., 2010, vol. 58(15), pp. 5070–85.

    CAS  Google Scholar 

  29. H. Ma, X.Q. Chen, R. Li, S. Wang, J. Dong, and W. Ke: Acta Mater., 2017, vol. 130, pp. 137–46.

    CAS  Google Scholar 

  30. J. Stewart and D.E. Williams: Corros. Sci., 1992, vol. 33(3), pp. 457–74.

    CAS  Google Scholar 

  31. C. Liu: Initiation Mechanism of Micro/Nano Corrosion in Q460NH Steel and Targeted Optimization, University of Science and Technology Beijing, Beijing, 2019.

    Google Scholar 

  32. S. Yang, M. Zhao, J. Feng, J. Li, and C. Liu: High Temp. Mater. Process., 2018, vol. 37, pp. 1007–16.

    CAS  Google Scholar 

  33. F. Ai, X. Xu, Y. Chen, B. Zhong, L. Li, and P. Gao: Corros. Protect., 2012, vol. 33(5), pp. 422–5.

    CAS  Google Scholar 

  34. K. Xu and B.G. Thomas: Metall. Mater. Trans. A., 2012, vol. 43A(3), pp. 1079–96.

    Google Scholar 

  35. G. Yang and X. Wang: Trans. Iron Steel Inst. Jpn., 2015, vol. 55(1), pp. 126–33.

    CAS  Google Scholar 

  36. P.E. Blöchl: Phys. Rev. B., 1994, vol. 50(24), pp. 17953–79.

    Google Scholar 

  37. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1997, vol. 78(7), art. no. 1396.

    CAS  Google Scholar 

  38. R.N. Lee and H.E. Farnsworth: Surf. Sci., 1965, vol. 3(5), pp. 461–79.

    CAS  Google Scholar 

  39. E.P. Yelsukov, E.V. Voronina, and V.A. Barinov: J. Magn. Magn Mater., 1992, vol. 115, pp. 271–80.

    Google Scholar 

  40. T.V. Dunaitseva, L.B. Romanovskii, E.G. Potap, and V.A. Perepelitsyn: Inorg. Mater., 1990, vol. 26, pp. 2301–2.

    Google Scholar 

  41. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, and S. Dacek: APL Mater., 2013, https://doi.org/10.1063/1.4812323.

    Article  Google Scholar 

  42. Y. Hou, T. Li, G. Li, and C. Cheng: Micron., 2019, https://doi.org/10.1016/j.micron.2019.102820.

    Article  Google Scholar 

  43. D.P. Ji, Q. Zhu, and S.Q. Wang: Surf. Sci., 2016, vol. 651, pp. 137–46.

    CAS  Google Scholar 

  44. Y. Cao, G. Li, Y. Hou, N. Moelans, and M. Guo: Physica B., 2019, vol. 558, pp. 10–9.

    CAS  Google Scholar 

  45. Y. Hou, J. Wang, L. Liu, G. Li, and D. Zhai: Micron., 2020, https://doi.org/10.1016/j.micron.2020.102898.

    Article  Google Scholar 

  46. K. Fushimi and M. Seo: J. Electrochem. Soc., 2001, vol. 148(11), pp. 31–9.

    Google Scholar 

  47. W. Batista, A.M.T. Louvisse, O.R. Mattos, and L. Sathler: Corros. Sci., 1988, vol. 28(8), pp. 759–68.

    CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Foundation of China (Nos. 51804086 and 52064011) and National Natural Science Foundation of Guizhou Province (Grant No. [2019]1086). Additionally, this project is supported by the Program Foundation for Talents of Education Department of Guizhou Province (Grant No. Qian Jiao He [2018]105). This research is supported by the high-performance computing platform of Guizhou University.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 12, 2021; accepted October 23, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, Y., Yang, S. et al. Study on Localized Corrosion Induced by Non-metallic Inclusions in OCTG Steel. Metall Mater Trans B 53, 1212–1223 (2022). https://doi.org/10.1007/s11663-021-02366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02366-5

Navigation