Skip to main content
Log in

Thermodynamic Consideration of Direct Oxygen Removal from Titanium by Utilizing Vapor of Rare Earth Metals

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

With the increase in demand for titanium, the usage of titanium scrap has increased. It is necessary to develop a new technology to efficiently remove oxygen impurities in titanium scrap. However, it is extremely difficult to remove oxygen directly from a solid solution of oxygen and titanium; thus, there is no effective deoxidation method for titanium at the industrial scale. In this study, the authors thermodynamically analyzed and considered the feasibility of a new technology to remove oxygen dissolved in titanium by utilizing the vapor of rare earth metals which have high vapor pressures at high temperatures, such as samarium, europium, thulium, and ytterbium. It was elucidated that titanium with oxygen levels of < 500 mass ppm could be obtained by exploiting the deoxidation ability of samarium, thulium, and ytterbium combined with their ability to form oxychlorides. The oxygen level achieved through the proposed technology is lower than that obtained using metallic calcium vapor. Based on thermodynamic considerations, a new process to efficiently remove oxygen in titanium using rare earth metals with high vapor pressure based on their oxyhalide formation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Z.Z. Fang, F.H. Froes, and Y. Zhang, eds.: Extractive Metallurgy of Titanium, 1st ed.: Conventional and Recent Advances in Extraction and Production of Titanium Metal, Elsevier, Amsterdam, 2019, p. 436.

  2. O. Takeda and T.H. Okabe: JOM., 2019, vol. 71(6), pp. 1981–90.

    Article  CAS  Google Scholar 

  3. T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.

    Article  CAS  Google Scholar 

  4. T.H. Okabe, M. Nakamura, T. Oishi, and K. Ono: Metall. Mater. Trans. B., 1993, vol. 24(3), pp. 449–55.

    Article  Google Scholar 

  5. T.H. Okabe, K.T. Jacob, and Y. Waseda: in Purification Process and Characterization of Ultra High Purity Metals, Y. Waseda and M. Isshiki, eds., Springer, Berlin, 2001, pp. 3–37.

  6. T.H. Okabe, C.Y. Zheng, and Y. Taninouchi: Metall. Mater. Trans. B., 2018, vol. 49B(3), pp. 1056–66.

    Article  Google Scholar 

  7. T.H. Okabe, Y. Taninouchi, and C.Y. Zheng: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3107–3017.

    Article  Google Scholar 

  8. C.Y. Zheng, T. Ouchi, A. Iizuka, Y. Taninouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2019, vol. 50B(2), pp. 622–31.

    Article  Google Scholar 

  9. C.Y. Zheng, T. Ouchi, L.X. Kong, Y. Taninouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2019, vol. 50B(4), pp. 1652–61.

    Article  Google Scholar 

  10. L.X. Kong, T. Ouchi, and T.H. Okabe: Mater. Trans., 2019, vol. 60(9), pp. 2059–68.

    Article  CAS  Google Scholar 

  11. L.X. Kong, T. Ouchi, C.Y. Zheng, and T.H. Okabe: J. Electrochem. Soc., 2019, vol. 166(13), pp. E429–37.

    Article  CAS  Google Scholar 

  12. A. Iizuka, T. Ouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 433–42.

    Article  Google Scholar 

  13. A. Iizuka, T. Ouchi, and T.H. Okabe: Mater. Trans., 2020, vol. 61(4), pp. 758–65.

    Article  CAS  Google Scholar 

  14. T. Tanaka, T. Ouchi, and T.H. Okabe: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 1485–94.

    Article  Google Scholar 

  15. T. Tanaka, T. Ouchi, and T.H. Okabe: Mater. Trans., 2020, vol. 61(10), pp. 1967–73.

    Article  CAS  Google Scholar 

  16. T. Tanaka, T. Ouchi, and T.H. Okabe: J. Sustain. Metall., 2020, vol. 6, pp. 667–79.

    Article  Google Scholar 

  17. L.X. Kong, T. Ouchi, and T.H. Okabe: J. Alloys. Compd., 2021, vol. 863, p. 156047.

  18. O. Kubaschewski, and W.A. Dench: J. Inst. Metals, 1953–1954, vol. 82, pp. 87–91.

  19. K.L. Komarek and M. Silver: Proceedings of IAEA Symposium, Thermodynamics of Nuclear Materials, Wien, 1962, pp. 749–74.

  20. K. Ono and S. Miyazaki: J. Jpn. Inst. Met., 1985, vol. 49(10), pp. 871–75 (in Japanese).

  21. F. Tian, G. Li, L. Li, Z. Wang, S. Yan, and X. Li: J. Alloys Compd., 2014, vol. 592(15), pp. 176–84.

    Article  CAS  Google Scholar 

  22. J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho, and J.W. Lim: Powder Metall., 2012, vol. 55(5), pp. 402–4.

    Article  CAS  Google Scholar 

  23. J.M. Oh, K.M. Roh, B.K. Lee, C.Y. Suh, W. Kim, H. Kwon, and J.W. Lim: J. Alloys Compd., 2014, vol. 593, pp. 61–6.

    Article  CAS  Google Scholar 

  24. J.M. Oh, H. Kwon, W. Kim, and J.W. Lim: Thin Solid Films., 2014, vol. 551, pp. 98–101.

    Article  CAS  Google Scholar 

  25. J.W. Lim, J.M. Oh, B.K. Lee, C.Y. Suh, and S.W. Cho: Deoxidation Apparatus for Preparing Titanium Powder with Low Oxygen Concentration, U.S. Patent No. 8,449,813, 2013.

  26. J.W. Lim, J.M. Oh, B.K. Lee, C.Y. Suh, and S.W. Cho: Method for Preparing Titanium Powder with Low Oxygen Concentration, U.S. Patent No. 8,449,646, 2013.

  27. J.M. Oh, I.H. Choi, C.Y. Suh, H. Kwon, J.W. Lim, and K.M. Roh: Met. Mater. Int., 2016, vol. 22(3), pp. 488–92.

    Article  CAS  Google Scholar 

  28. S.J. Kim, J.M. Oh, and J.W. Lim: Met. Mater. Int., 2016, vol. 22, pp. 658–62.

    Article  CAS  Google Scholar 

  29. T. Kim, J.M. Oh, G.H. Cho, H. Chang, H.D. Jang, and J.W. Lim: Appl. Surf. Sci. 2020, vol. 534, p. 147623.

  30. S.R. Seagle: in Proceedings of the International Conference on Titanium Products and Applications, Florida, USA, 1990, pp. 66–73.

  31. R.L. Fisher: Deoxidizing Refractory Metals, U.K. Patent No. 2,224,749, 1990.

  32. R.L. Fisher: Deoxidation of Titanium and Similar Metals Using a Deoxidant in a Molten Metal Carrier, U.S. Patent No. 4,923,531, 1990.

  33. R.L. Fisher: Deoxidation of a Refractory Metal, U.S. Patent No. 5,022,935, 1991.

  34. R.L. Fisher and S.R. Seagle: in Proceedings of the 7th Int. Conf. on Ti, June 28–July 2 1992, Titanium’ 92: Science and Technology, TMS, 1993, vol. 3, pp. 2265–72.

  35. I. Barin: Thermochemical Data of Pure Substance, 3rd ed. Wiley-VCH, Weinheim, 1995.

    Book  Google Scholar 

  36. O. Knacke, O. Kubaschewski, and K. Hesselman: Thermochemical Properties of Inorganic Substances, Springer, Berlin, 1991.

    Google Scholar 

  37. W. Benenson, J.W. Harris, H. Stocker, and H. Lutz, eds.: Handbook of Physics, 1st ed., Springer, New York, 2002, pp. 778–81.

  38. K.A. Gschneidner Jr., and L. Eyring, et al., eds.: Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 1996, vol. 23, p. 435.

  39. K.A. Gschneidner Jr., and L. Eyring, et al., eds.: Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 1994, vol. 18, p. 413.

  40. F. Habashi, ed.: Handbook of Extractive Metallurgy, VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1997, vol. 2, pp. 1129–80.

  41. N. Krishnamurthy and C.K. Gupta: Extractive Metallurgy of Rare Earths, 2nd ed. CRC Press Taylor & Francis Group, Boca Raton, 2016.

    Google Scholar 

  42. R. Ohmachi and T. Goto: Resour. Process. Technol. (Special Lect.)., 1991, vol. 38(3), pp. 138–43. ((in Japanese)).

    Article  Google Scholar 

  43. T.H. Okabe, R.O. Suzuki, T. Oishi, and K. Ono: Mater. Trans. JIM., 1991, vol. 32(5), pp. 485–8.

    Article  CAS  Google Scholar 

  44. A.K. Baeve and G.I. Novikov: Russ. J. Inorg. Chem., 1965, vol. 10(11), pp. 1337–41.

    Google Scholar 

  45. Y.B. Patrikeev, G.I. Novikov, and V.V. Badovskii: Russ. J. Inorg. Chem., 1973, vol. 47(2), p. 284.

  46. J.B. Burns, J.R. Peterson, and R.G. Haire: J. Alloys Compd., 1998, vol. 265, pp. 146–52.

    Article  CAS  Google Scholar 

  47. L.R. Morss: Standard Potentials in Aqueous Solution, A.J. Bard, R. Parsons, and J. Jordan, eds., International Union of Pure and Applied Chemistry, V. Series, 1985, pp. 587–630.

  48. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall: The NBS tables of chemical thermodynamic properties. selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 1982, vol. 11(2), pp. 1–392.

  49. Z. Lei, C.C. Hou, D. Wang, E.X. Chen, Z.G. Liu, Y.J. Wang, Q. Lei, and J.L. Li: A split molybdenum crucible for distilling metal samarium, Chinese Patent No. CN204251678U, 2014 (in Chinese).

  50. Z.A. Li, S.H. Yan, Z.H. Li, H.W. Li, B. Zhao, Q.S. Yang, Z.Q. Wang, S.M. Pang, S. He, and D.B. Yu: Process and device for preparing high-purity rare earth metal by layer distillation, Chinese Patent No. CN101307384 A, 2007 (in Chinese).

  51. Y.J. Liu and S.H. Yan: Rare Earth Inform (Compr. Rep.)., 2003, vol. 4, pp. 2–8. ((in Chinese)).

    Google Scholar 

  52. W.P. Chen, S.P. Liu, Q.S Yang, and S.Z. Liu: Rare Metals and Cemented Carbides, 2005, vol. 33(4), pp. 17–18 (in Chinese).

  53. Z.Z. He, Y.J. Jiang, J.Y. Yang, Q. Dai, X.Q. Zhang, Z.Q. Sun, J.M. Gao, and Z. Han: Chin. Rare Earth, 1999, vol. 20(4), pp. 24-26 (in Chinese).

  54. L.Y. Yu: Vacuum furnace and method for preparing high-purity metal ytterbium, Chinese Patent No. CN109082542A, 2018 (in Chinese).

  55. R.F. Deng, C.H. Fang, B.Q. Wu, F.C. Xiao, and W. Zhang: Rare Met., 1996, vol. 20(4), pp. 269–96 (in Chinese).

  56. X.S. Wang, Z.Q. Wang, D.H. Chen, S.M. Pang, L.H. Xu, Z.A. Li, and S.H. Yan: Chin. Rare Earth, 2015, vol. 36(5), pp. 123–32 (in Chinese).

  57. K.A. Gschneidner Jr. and L. Eyring, eds.: Handbook on the Physics and Chemistry of Rare Earths, North-Holland, Amsterdam, 1978, pp. 182–84.

  58. G.X. Xu: Rare Earths, 2nd ed., Middle volume, Metallurgical Industry Press, Beijing, 1995, pp. 39–44 (in Chinese)

Download references

Acknowledgments

The authors express their sincere gratitude to Professor Hongmin Zhu and Professor Osamu Takeda of the Department of Metallurgy, Graduate School of Engineering, Tohoku University, Professor Yu-ki Yaninouchi of the Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, and graduate students Mr. Akihiro Iizuka and Mr. Kenta Akaishi of the Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, for their valuable advice in compiling this work. This work was supported in part by a Grant-in-Aid for Scientific Research on Scientific Research (S) from the Japan Society for the Promotion of Science (JSPS) (Project Numbers: 26220910 and 19H05623). A part of this work is based on the results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) Feasibility Study Program (Uncharted Territory Challenge 2050).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanari Ouchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 16, 2021; accepted September 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okabe, T.H., Kong, L. & Ouchi, T. Thermodynamic Consideration of Direct Oxygen Removal from Titanium by Utilizing Vapor of Rare Earth Metals. Metall Mater Trans B 53, 1269–1282 (2022). https://doi.org/10.1007/s11663-021-02342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02342-z

Navigation