Skip to main content
Log in

Smelting Vanadium–Titanium Magnetite by COREX Process: Effect of V–Ti Bearing Pellet Ratio on the Softening and Melting Behavior of Mixed Burden

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The slag foaming caused by Ti(C,N) is the main limitation of smelting vanadium–titanium magnetite by blast furnace. COREX, with unique pure oxygen injection that avoids the formation of Ti(C,N), has a huge potential advantage for the smelting of vanadium–titanium magnetite. In the present study, the detailed characterization was performed on the softening and melting behavior of V–Ti bearing burden under simulated COREX conditions. Results indicated that the added V–Ti bearing pellet (VTP) led to the increase of T10 and decreases of T40, TS and Td for mixed burden due to the generation of FeO·TiO2. Every 10 pct increase in VTP ratio reduced ΔT3 by 13.7 °C. Furthermore, the effect of VTP on burden dropping changed from inhibition (TiO2 → TiC) to promotion (\({({\mathrm{Si}}_{2}{\mathrm{O}}_{5}^{2-})}_{n}\to {({\mathrm{SiO}}_{3}^{2-})}_{n}\)) with increased VTP ratio, causing the burden dropping rate first to decrease from 70.0 to 13.5 and then increase to 96.6 pct, weakening the foaming of slag. When the VTP ratio reached 47.25 wt pct, the burden bed still had good gas permeability; its SD and PPeak caused by slag foaming were 8.06 kPa and 218.41 kPa·°C. The vanadium content in residual iron also exceeded 0.2 wt pct, the minimum requirement for extracting vanadium from molten iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Zhang, S. Liu, W. Ma, K. Zhu, L. Cao, and Y. Dai: Present Status and Development of Comprehensive Utilization of Vanadium-Titanium Magnetite, Springer International Publishing, San Diego, CA, 2017, pp. 203–10.

    Google Scholar 

  2. P.R. Taylor, S.A. Shuey, E.E. Vidal, and J.C. Gomez: Mining. Metall. Explor., 2006, vol. 23, pp. 80–6.

    CAS  Google Scholar 

  3. B. Yang, J. He, G. Zhang, and J. Guo: Vanadium., 2021, vol. 6, pp. 123–47.

    Google Scholar 

  4. D. Chen, H. Zhao, G. Hu, T. Qi, H. Yu, G. Zhang, L. Wang, and W. Wang: J. Hazard. Mater., 2015, vol. 294, pp. 35–40.

    CAS  Google Scholar 

  5. B. Wang, X. Ding, T. Ju, X. Zhang, and G. Cheng: Metals-Basel., 2021, vol. 11, p. 16. https://doi.org/10.3390/met11010045.

    Article  CAS  Google Scholar 

  6. Y. Sui, Y. Guo, T. Jiang, and G.Z. Qiu: J. Mater. Res. Technol., 2019, vol. 8, pp. 3036–43.

    CAS  Google Scholar 

  7. E. Hukkanen and H. Walden: Int. J. Miner. Process., 1985, vol. 15, pp. 89–102.

    CAS  Google Scholar 

  8. L. Han, W. Huang, and Y. Liu: ISIJ Int., 2016, vol. 56, pp. 1559–62.

    CAS  Google Scholar 

  9. X. Zhou and Z. Du: Advanced Technologies in Manufacturing, Engineering and Materials, Trans Tech Publications, Zurich, 2013, pp. 1430–4.

    Google Scholar 

  10. X. Zhou, Z. Shi, G. Zhang and Z. Du: Advances in Mechatronics and Control Engineering, Trans Tech Publications, Switzerland, 2014, pp. 612–15.

    Google Scholar 

  11. Y. You, Z. Luo, Z. Zou, and R. Yang: Powder Technol., 2020, vol. 361, pp. 274–82.

    CAS  Google Scholar 

  12. C. Hu, W. Han, and Y. Zhang: Adv. Mater. Res., 2010, vol. 146, pp. 853–8.

    Google Scholar 

  13. L. Jiao, S. Kuang, A. Yu, Y. Li, X. Mao, and H. Xu: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 258–75.

    Google Scholar 

  14. K. Ma, J. Xu, J. Deng, D. Wang, Y. Xu, Z. Liao, C. Sun, S.F. Zhang, and L.Y. Wen: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 2308–21.

    Google Scholar 

  15. X. Yu and Y. Shen: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2079–94.

    Google Scholar 

  16. W. Zhao, M. Chu, Z. Liu, H. Wang, J. Tang, and Z. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.

    Google Scholar 

  17. X. Liu, T. Honeyands, G. Evans, P. Zulli, and D. Odea: Ironmaking Steelmaking., 2018, vol. 46, pp. 953–67.

    Google Scholar 

  18. Y.Z. Pan, X.F. She, G. Wang, H.B. Zuo, J.S. Wang, and Q.G. Xue: ISIJ Int., 2019, vol. 59, pp. 1192–7.

    CAS  Google Scholar 

  19. M. Guha and M. Sinha: ISIJ Int., 2015, vol. 55, pp. 2033–5.

    CAS  Google Scholar 

  20. W.T. Guo, Q.G. Xue, Y.L. Liu, X.F. She, and J.S. Wang: Ironmaking Steelmaking., 2016, vol. 43, pp. 22–30.

    CAS  Google Scholar 

  21. A.A. Adetoro, H. Sun, S. He, Q. Zhu, and H. Li: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 846–57.

    Google Scholar 

  22. K. Zhou, J.Q. Song, Z.X. You, H. Xie, and X.W. Lv: ISIJ Int., 2020, vol. 60, pp. 1409–15.

    CAS  Google Scholar 

  23. G. Cheng, X. Xue, T. Jiang, and P. Duan: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1713–26.

    Google Scholar 

  24. L. Zhang, Z. Gao, S. Yang, W. Tang, and X. Xue: Metals-Basel., 2020, vol. 10, p. 14. https://doi.org/10.3390/met10050569.

    Article  CAS  Google Scholar 

  25. L. Zhang, S. Yang, W. Tang, and X. Xue: Minerals-Basel., 2019, vol. 9, p. 14. https://doi.org/10.3390/met9040395.

    Article  CAS  Google Scholar 

  26. E.A. Mousa and A. Babich: ISIJ Int., 2011, vol. 51, pp. 350–8.

    CAS  Google Scholar 

  27. G. Wang, Q.G. Xue, and J.S. Wang: Ironmaking Steelmaking., 2019, vol. 46, pp. 477–84.

    CAS  Google Scholar 

  28. D.J. Gavel, Q.S. Song, A. Adema, J. van der Stel, J. Sietsma, R. Boom, and Y.X. Yang: Ironmaking Steelmaking., 2020, vol. 47, pp. 195–202.

    CAS  Google Scholar 

  29. D.J. Gavel, A. Adema, J. van der Stel, J. Sietsma, R. Boom, and Y.X. Yang: ISIJ Int., 2019, vol. 59, pp. 778–86.

    CAS  Google Scholar 

  30. D.J. Gavel, A. Adema, J. van der Stel, C. Kwakernaak, J. Sietsma, R. Boom, and Y.X. Yang: ISIJ Int., 2020, vol. 60, pp. 451–62.

    CAS  Google Scholar 

  31. W. Zhao, M. Chu, H. Wang, Z. Liu, J. Tang, and Z. Ying: ISIJ Int., 2018, vol. 58, pp. 1989–98.

    CAS  Google Scholar 

  32. H. Wang, G.B. Qiu, and Q. Deng: Metal. Int., 2012, vol. 17, pp. 22–6.

    CAS  Google Scholar 

  33. W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, and Y.T. Tang: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 501–10.

    CAS  Google Scholar 

  34. Z. Chang, J. Zhang, and X. Ning: Fuel., 2019, vol. 253, pp. 32–9.

    CAS  Google Scholar 

  35. H. Xie, W. Yu, Z.X. You, X.W. Lv, and C.G. Bai: Metals-Basel., 2019, vol. 9, p. 10.https://doi.org/10.3390/met9040395.

    Article  CAS  Google Scholar 

  36. C. Srishilan and A.K. Shukla: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 312–23.

    Google Scholar 

  37. Y.Z. Pan, A.J. Zhang, L. Lin, J.S. Wang, H.X. Feng and Q.S. Lin: 10th International Symposium on High-Temperature Metallurgical Processing, 2019, pp. 523–30.

  38. National Standard (Standardization Administration of China, 2017), https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSF00050625&DbName=SCSF. Accessed 07 September 2017.

  39. S. Pal and A.K. Lahiri: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 103–14.

    CAS  Google Scholar 

  40. National Standard (Standardization Administration of China, 2008), https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSF00012632&DbName=SCSF. Accessed 13 May 2008.

  41. National Standard (Standardization Administration of China, 2019), https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSF00061542&DbName=SCSF. Accessed 31 December 2019.

  42. J. Sternel and A.K. Lahiri: Ironmaking Steelmaking., 1999, vol. 26, pp. 339–48.

    Google Scholar 

  43. M. Sasaki, K. Ono, and A. Suzuki: Tetsu to Hagane., 1976, vol. 62, pp. 559–69.

    CAS  Google Scholar 

  44. G. Wang, Q. Xue, and J. Wang: Thermochim. Acta., 2015, vol. 621, pp. 90–8.

    CAS  Google Scholar 

  45. P.F. Nogueira and R.J. Fruehan: Metall. Mater. Trans. B., 2005, vol. 36B, pp. 583–90.

    CAS  Google Scholar 

  46. I.V. Flores, O. Matos, A.L. Silva, and M.C. Bagatini: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1716–38.

    Google Scholar 

  47. M.M. Hessien, Y. Kashiwaya, K. Ishii, M.I. Nasr, and A.A. Geassy: Ironmaking Steelmaking., 2008, vol. 35, pp. 183–90.

    CAS  Google Scholar 

  48. P.F. Nogueira and R.J. Fruehan: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 551–8.

    CAS  Google Scholar 

  49. P. Kaushik and R.J. Fruehan: Ironmaking Steelmaking., 2006, vol. 33, pp. 520–8.

    CAS  Google Scholar 

  50. K. Nagata, R. Kojima, T. Murakami, M. Susa, and H. Fukuyama: ISIJ Int., 2001, vol. 41, pp. 1316–23.

    CAS  Google Scholar 

  51. S.S. Liu, Y.F. Guo, G.Z. Qiu, and T. Jiang: Rare Met., 2020, vol. 39, pp. 1348–52.

    Google Scholar 

  52. Y.F. Li, Z.J. He, W.L. Zhan, W.G. Kong, P. Han and J.H. Zhang: Metals, 2020, vol. 10. https://doi.org/10.3390/met10091254.

  53. Y.N. Qie, Q. Lyu, C.C. Lan, S.H. Zhang, and R. Liu: J. Iron Steel Res. Int., 2020, vol. 27, pp. 132–40.

    CAS  Google Scholar 

  54. T. Kon, S. Natsui, S. Matsuhashi, S. Ueda, R. Inoue, and T. Ariyama: Steel Res. Int., 2013, vol. 84, pp. 1146–56.

    CAS  Google Scholar 

  55. A. Inayoshi and S. Hayashi: Tetsu to Hagane., 2010, vol. 96, pp. 586–91.

    CAS  Google Scholar 

  56. Y.Z. Pan, H.B. Zuo, B.X. Wang, J.S. Wang, G. Wang, and Y.L. Liu: Ironmaking Steelmaking., 2020, vol. 47, pp. 322–7.

    CAS  Google Scholar 

  57. Y.Z. Wang, J.L. Zhang, Z.J. Liu, and C.B. Du: JOM., 2017, vol. 69, pp. 2397–403.

    CAS  Google Scholar 

  58. K. Jiao, J. Zhang, Z. Liu, S. Kuang, and Y. Liu: ISIJ Int., 2017, vol. 57, pp. 48–54.

    CAS  Google Scholar 

  59. T. Lou, Y. Li, L. Li, and Z. Shui: Acta Metallurgica Sinica, 2000, pp. 141–44.

  60. S.F. Zhang, X. Zhang, W. Liu, X.W. Lv, C.G. Bai, and L.Y. Weng: J. Non-Cryst. Solids., 2014, vol. 402, pp. 214–22.

    CAS  Google Scholar 

  61. Z. Yan, R.G. Reddy, X.W. Lv, Z.D. Pang, and C.G. Bai: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 251–61.

    Google Scholar 

  62. Z.D. Pang, X.W. Lv, J. Ling, Y. Jiang, Z. Yan, and J. Dang: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2348–57.

    Google Scholar 

  63. T. Furukawa and W.B. White: Phys. Chem. Glasses., 1979, vol. 20, pp. 69–80.

    CAS  Google Scholar 

  64. D. Virgo, B.O. Mysen, and I. Kushiro: Science., 1980, vol. 208, pp. 1371–3.

    CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Project No. U2003215). The authors also thank Xinjiang Bayi Iron & Steel Co., Ltd., for providing samples for the experiment.

Conflict of interest

The author declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 3, 2021; accepted September 15, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Zhang, S., Yang, X. et al. Smelting Vanadium–Titanium Magnetite by COREX Process: Effect of V–Ti Bearing Pellet Ratio on the Softening and Melting Behavior of Mixed Burden. Metall Mater Trans B 52, 4096–4108 (2021). https://doi.org/10.1007/s11663-021-02331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02331-2

Navigation