Skip to main content
Log in

A Coupling Model Predicting the Precipitation and Growth of MnS Inclusions in U75V High-Carbon Heavy Rail Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

MnS inclusions are the primary non-metallic inclusions in U75V high-carbon heavy rail steel and can be detrimental to the mechanical properties of this material. With the aim of identifying means of controlling the amount and morphology of these inclusions, the present work examined the precipitation thermodynamics and growth kinetics of MnS during the solidification of molten steel using the FactSage 7.0 software package with various modeling calculations. The results indicated that the equilibrium partition coefficients of both Mn (kMn) and S (kS) decreased monotonically with increases in the solid fraction, and the kMn and kS values ranged from 0.6557 to 0.6941 and from 0.0141 to 0.019, respectively. This work also demonstrated that MnS precipitates in the two-phase region during the late stage of solidification to a solid fraction of 0.9263, while increasing the solute concentrations generates earlier precipitation. The Mn and S concentrations were shown to increase rapidly prior to MnS precipitation, after which the Mn concentration continued to increase while the S concentration decreased. Increasing the cooling rate and decreasing the S concentration tended to reduce the size of MnS inclusions but decreasing the Mn concentration had the opposite effect. The sizes of MnS inclusions were calculated using a coupling model and determined to be in the range of 4.4–12.4 μm, in good agreement with values obtained from scanning electronic microscopy observations of a steel billet. Observations of MnS inclusions before and after the rolling process indicated that the deformation ability (defined as the ratio of the length (after the rolling process) to the diameter (before the rolling process) of inclusions) of MnS was in the range of 11.89 to 54.88. This work provides an improved understanding of the precipitation and growth of MnS inclusions in U75V high-carbon heavy rail steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X.W. Zhang, L.F. Zhang, W. Yang, and Y. Dong: Steel. Res. Int., 2017, vol. 88, pp. 1–16.

    Google Scholar 

  2. F.R. Hernández, G. Plascencia, and K. Koch: Eng. Fail. Anal., 2009, vol. 16, pp. 281–94.

    Article  Google Scholar 

  3. G. Domizzi, G. Anteri, and J. Ovejero-Garcıa: Corros. Sci., 2001, vol. 43, pp. 325–39.

    Article  CAS  Google Scholar 

  4. S. Luo, B. Wang, Z. Wang, D. Jiang, W. Wang, and M. Zhu: ISIJ. Int., 2017, vol. 57, pp. 2000–9.

    Article  CAS  Google Scholar 

  5. J.H. Qi, J. Wu, J.P. Suo, G. Chen, Q. Tian, and Y. Ji: Res. Iron Steel., 2011, vol. 39, pp. 22–4.

    CAS  Google Scholar 

  6. X.W. Zhang, L.F. Zhang, W. Yang, Y.C. Dong, and Y.Z. Li: Iron Steel., 2016, vol. 51, pp. 30–9.

    CAS  Google Scholar 

  7. H.Y. Zhu, J. Sun, W. Wang, W. Wang, J. Lei, and Z.L. Xue: Results Phys., 2019, vol. 12, pp. 67–72.

    Article  Google Scholar 

  8. X. Zhang, G.J. Ma, and M. Liu: Philos. Mag., 2019, vol. 99, pp. 1041–56.

    Article  CAS  Google Scholar 

  9. L. Gui, M. Long, Y. Huang, D. Chen, H. Chen, H. Duan, and S. Yu: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3280–92.

    Article  Google Scholar 

  10. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A., 2001, vol. 32A, pp. 1755–67.

    Article  CAS  Google Scholar 

  11. E. Scheil: Z. Met., 1942, vol. 34, pp. 70–2.

    Google Scholar 

  12. T.F. Bower, H. Brody, and M.C. Flemings: Trans. Metall. Soc. AIME., 1966, vol. 236, pp. 624–34.

    CAS  Google Scholar 

  13. T. Clyne and W. Kurz: Metall. Trans. A., 1981, vol. 12A, pp. 965–71.

    Article  Google Scholar 

  14. I. Ohnaka: Trans. Iron. Steel. Inst. Jpn., 1986, vol. 26, pp. 1045–51.

    Article  CAS  Google Scholar 

  15. V.R. Voller and C. Beckermann: Metall. Mater. Trans. A., 1999, vol. 30, pp. 2183–9.

    Article  Google Scholar 

  16. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka: Metall. Trans. B., 1986, vol. 17B, pp. 845–59.

    Article  CAS  Google Scholar 

  17. D. You, C. Bernhard, G. Wieser, and S. Michelic: Steel. Res. Int., 2016, vol. 87, pp. 840–9.

    Article  CAS  Google Scholar 

  18. H. Chen, M. Long, J. Cao, D. Chen, T. Liu, and Z. Dong: Metals., 2017, vol. 7, pp. 288–97.

    Article  Google Scholar 

  19. L. Gui, M. Long, H. Chen, D. Chen, H. Duan, Y. Huang, and L. Tao: J. Mater. Res., 2018, vol. 33, pp. 3490–500.

    Article  CAS  Google Scholar 

  20. L. Gui, M. Long, D. Chen, J. Zhao, Q. Wang, and H. Duan: J. Mater. Res. Technol., 2020, vol. 9, pp. 89–103.

    Article  CAS  Google Scholar 

  21. W. Zheng, Z.H. Wu, G.Q. Li, Z. Zhang, and C.Y. Zhu: ISIJ. Int., 2014, vol. 54, pp. 1755–64.

    Article  CAS  Google Scholar 

  22. C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, and J. Melançon: Calphad., 2016, vol. 55, pp. 1–19.

    Article  CAS  Google Scholar 

  23. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, and A. Pelton: Calphad., 2009, vol. 33, pp. 295–311.

    Article  CAS  Google Scholar 

  24. D. You, S.K. Michelic, G. Wieser, and C. Bernhard: J. Mater. Sci., 2017, vol. 52, pp. 1797–812.

    Article  CAS  Google Scholar 

  25. Z. Liu, J. Wei, and K. Cai: ISIJ. Int., 2002, vol. 42, pp. 958–63.

    Article  CAS  Google Scholar 

  26. N. Li, L. Wang, Z.L. Xue, C.Z. Li, A. Huang, and F.F. Wang: Results Phys., 2020, vol. 16, pp. 102929–38.

    Article  Google Scholar 

  27. Y. Jin and S. Du: Ironmak. Steelmak., 2018, vol. 45, pp. 224–9.

    Article  CAS  Google Scholar 

  28. Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1378–89.

    Article  Google Scholar 

  29. Y.F. Qi, J. Li, C.B. Shi, H. Wang, and D.L. Zheng: Metall. Res. Technol., 2019, vol. 116, pp. 322–33.

    Article  CAS  Google Scholar 

  30. L. Wang, Z.L. Xue, Y.L. Chen, and X.G. Bi: Processes., 2020, vol. 8, pp. 8–20.

    Google Scholar 

  31. P.M. Ocansey and D. Pourier: Mater. Sci. Eng. A., 1996, vol. 211, pp. 10–4.

    Article  Google Scholar 

  32. L. Wang, Z.L. Xue, H.Y. Zhu, and J.L. Lei: Results Phys., 2019, vol. 14, pp. 28–34.

    Google Scholar 

  33. Y. Liu, L. Zhang, H. Duan, Y. Zhang, Y. Luo, and A.N. Conejo: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 3015–25.

    Article  Google Scholar 

  34. Q. Tian, G. Wang, D. Shang, H. Lei, X. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3137–50.

    Article  Google Scholar 

  35. J.X. Chen: Steelmaking Common Chart Data Manual. Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  36. W.Q. Ren, L. Wang, Z.L. Xue, C.Z. Li, H.Y. Zhu, A. Huang, and C. Li: High. Temp. Mater. Processes., 2021, vol. 40, pp. 178–92.

    Article  CAS  Google Scholar 

  37. L. Gui, M. Long, S. Wu, Z. Dong, D. Chen, Y. Huang, H. Duan, and L. Vitos: J Mater. Sci. Technol., 2019, vol. 35, pp. 2383–95.

    Article  Google Scholar 

  38. X.W. Zhang, C.F. Yang, and L.F. Zhang: Metall. Res. Technol., 2020, vol. 117, pp. 110–211.

    Article  Google Scholar 

  39. A. Paul, T. Laurila, V. Vuorinen, and S.V. Divinski: Fick’s laws of diffusion, in Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer, 2014, pp. 115–39. https://doi.org/10.1007/978-3-319-07461-0_3.

  40. R. Diederichs and W. Bleck: Steel. Res. Int., 2006, vol. 77, pp. 202–9.

    Article  CAS  Google Scholar 

  41. J. Lei, Z. Xue, Y. Jiang, J. Zhang, and T. Zhu: Metal. Int., 2012, vol. 17, pp. 10–5.

    CAS  Google Scholar 

  42. M.H. Lee and J.H. Park: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 877–93.

    Article  Google Scholar 

  43. Q. Tian, G. Wang, Y. Zhao, J. Li, and Q. Wang: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1149–64.

    Article  Google Scholar 

  44. L. Gui, M. Long, H. Zhang, D. Chen, S. Liu, Q. Wang, and H. Duan: J. Mater. Res. Technol., 2020, vol. 9, pp. 5499–514.

    Article  CAS  Google Scholar 

  45. B. Li, X. Shi, H. Guo, and J. Guo: Materials., 2019, vol. 12, pp. 1463–75.

    Article  CAS  Google Scholar 

  46. J. Fu, W. Qiu, Q. Nie, and Y. Wu: J. Alloys Compd., 2017, vol. 699, pp. 938–46.

    Article  CAS  Google Scholar 

  47. X.W. Zhang, L.F. Zhang, W. Yang, W. Wang, Y.C. Dong, and Y.Z. Li: J. Iron Steel. Res. Int., 2017, vol. 29, pp. 724–31.

    CAS  Google Scholar 

  48. X.F. Cai, Y.P. Bao, M. Wang, L. Lin, N.C. Dai, and C. Gu: Metall. Res. Technol., 2015, vol. 112, pp. 407–18.

    Article  Google Scholar 

  49. Q.F. Shu, V.V. Visuri, T. Alatarvas, and T. Fabritius: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 2905–16.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51874214), the Special Project of Central Government for Local Science and Technology Development of Hubei Province (Grant No. 2019ZYYD076), and Natural Science Foundation of Hubei Province (Grant No. 2020CFB121).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Wang or Shengqiang Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 24, 2020; accepted August 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Z., Li, N., Wang, L. et al. A Coupling Model Predicting the Precipitation and Growth of MnS Inclusions in U75V High-Carbon Heavy Rail Steel. Metall Mater Trans B 52, 3860–3874 (2021). https://doi.org/10.1007/s11663-021-02301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02301-8

Navigation