Skip to main content
Log in

Thermodynamic Evaluation of Element Transfer Behaviors for Fused CaO-SiO2-MnO Fluxes Subjected to High Heat Input Submerged Arc Welding

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Submerged arc welding has been performed by employing fused CaO-SiO2-MnO fluxes of varying MnO and CaO contents on EH36 shipbuilding steel grade. Transfer levels of O, Si, and Mn between fluxes and weld metals have been quantified and evaluated from thermodynamic perspectives. The results show that both slag-metal and gas-slag-metal equilibrium considerations are capable of placing limits on the direction and amount of element transferred between fluxes and weld metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1. S. Kou: Welding Metallurgy, 2nd ed.,Wiley & Sons, New York, NY, 2003, pp. 22–95.

    Google Scholar 

  2. 2. V. Sengupta, D. Havrylov and P. Mendez: Weld. J., 2019, vol. 98, pp. 283–313.

    Google Scholar 

  3. D. Olson, S. Liu, R.H. Frost, G. Edwards and D. Fleming: Nature and Behavior of Fluxes Used for Welding, ASM Handbook, Materials Park, OH, 1993, vol. 6, pp. 43–54.

  4. 4. C. Natalie, D. Olson and M. Blander: Ann. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    Article  CAS  Google Scholar 

  5. 5. A. Liby, R. Dixon and D. Olson: Welding: Theory and Practice, 1st ed., Elsevier Science Publishers B, Amsterdam, Netherlands, 1990, pp. 150–69.

    Google Scholar 

  6. 6. C. Chai and T. Eagar: Metall. Trans. B, 1981, vol. 12, pp. 539–47.

    Article  Google Scholar 

  7. 7. C. Chai: Slag-Metal Reactions during Flux Shielded Arc Welding, Massachusetts Institute of Technology, Cambridge, MA, 1980.

    Google Scholar 

  8. 8. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 65–71.

    Article  Google Scholar 

  9. 9. U. Mitra and T. Eagar: Metall. Trans. B, 1991, vol. 22, pp. 73–81.

    Article  Google Scholar 

  10. 10. U. Mitra and T. Eagar: Metall. Trans. A, 1984, vol. 15, pp. 217–27.

    Article  Google Scholar 

  11. 11. G. Belton, T. Moore and E. Tankins: Weld. J., 1963, vol. 42, pp. 289–97.

    Google Scholar 

  12. 12. J. Zhang, J. Leng and C. Wang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2083–87.

    Article  Google Scholar 

  13. 13. R. Kohno, T. Takami, N. Mori and K. Nagano: Weld. J., 1982, vol. 61, pp. 373–80.

    Google Scholar 

  14. 14. A. Mercado, V. Hirata, H. Rosales, P. Diaz and E. Valdez: Mater. Charact., 2009, vol. 60, pp. 36–39.

    Article  Google Scholar 

  15. 15. J. Zhang, T. Coetsee and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 16–21.

    Article  Google Scholar 

  16. 16. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 885–90.

    Article  Google Scholar 

  17. 17. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1350–54.

    Article  Google Scholar 

  18. 18. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1805–12.

    Article  Google Scholar 

  19. 19. J. Zhang, T. Coetsee, H. Dong and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1953–57.

    Article  Google Scholar 

  20. 20. J. Palm: Weld. J., 1972, vol. 51, p. 358–60.

    Google Scholar 

  21. 21. K. Ferrera and D. Olson: Weld. J, 1975, vol. 54, pp. 211–15.

    Google Scholar 

  22. 22. C. Chai and T. Eagar: Weld. J., 1982, vol. 61, pp. 229–32.

    Google Scholar 

  23. 23. S. Tuliani, T. Boniszewski and N. Eaton: Weld. Met. Fabr., 1969, vol. 37, pp. 327–39.

    CAS  Google Scholar 

  24. 24. A. Polar, J. Indacochea and M. Blander, Weld. J., 1991, vol. 70, pp. 15–19.

    Google Scholar 

  25. 25. A. Crespo, R. Puchol, L. González, C. Pérez, E. Cedré and J. Jacomino: Weld. Res. Int., 2010, vol. 24, pp. 518–23.

    Article  Google Scholar 

  26. 26. P. Burck, J. Indacochea and D. Olson: Weld. J., 1990, vol. 3, pp. 115–22.

    Google Scholar 

  27. 27. J. Zhang, T. Coetsee, S. Basu and C. Wang: CALPHAD, 2020, vol. 71, 102195.

    Article  CAS  Google Scholar 

  28. 28. J. Indacochea, M. Blander, N. Christensen and D. Olson: Metall. Trans. B, 1985, vol. 16, pp. 237–45.

    Article  Google Scholar 

  29. 29. N. Christensen and J. Chipman: Weld. Res. Counc. Bull., 1953, vol. 15, pp. 1–14.

    Article  Google Scholar 

  30. 30. F. Glasser: J. Am. Ceram. Soc., 1962, vol. 45, pp. 242–49.

    Article  CAS  Google Scholar 

  31. 31. P. Kanjilal, T. Pal and S. Majumdar: Weld. J., 2007, vol. 10, pp. 135–46.

    Google Scholar 

  32. 32. C. Chai and T. Eagar, J. Mater. Energy Syst., 1983, vol. 5, pp. 160–64.

    Article  CAS  Google Scholar 

  33. 33. T. Lau, G. Weatherly and A. McLean: Weld. J., 1985, vol. 64, pp. 343–47.

    Google Scholar 

  34. 34. T. Lau, G. Weatherly and A. McLean: Weld. J., 1986, vol. 65, pp. 31–38.

    Google Scholar 

  35. 35. C. Dallam, S. Liu and D. Olson: Weld. J., 1985, vol. 64, pp. 140–51.

    Google Scholar 

  36. 36. U. Mitra, R. Sutton and T. Eagar: Metall. Mater. Trans. B, 1983, vol. 14, pp. 510–13.

    Article  Google Scholar 

  37. 38. I. Pokhodnya and B. Kostenko: Automat Weld, 1965, vol. 18, pp. 21–29.

    Google Scholar 

  38. 39. A. Bolten and T. Eagar: Metall. Mater. Trans. B, 1984, vol. 15, pp. 461–69.

    Article  Google Scholar 

  39. 40. Z. Yang and T. DebRoy: Metall. Mater. Trans. B, 1999, vol. 30, pp. 483–93.

    Article  Google Scholar 

  40. 41. H. Zhao and T. DebRoy: Metall. Mater. Trans. B, 2001, vol. 32, pp. 163–72.

    Article  CAS  Google Scholar 

  41. 42. R. Farrar and P. Harrison: J. Mater. Sci. 1987, vol. 22, pp. 3812–20.

    Article  CAS  Google Scholar 

  42. 43. L. Taylor and R. Farrar: Weld. Met. Fabr., 1975, vol.43, p.305.

    CAS  Google Scholar 

  43. 44. T. Eagar: Weld. J., 1978, vol. 57, pp. 76–80.

    Google Scholar 

  44. 46. C. Bale, P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R. Mahfoud, J. Melançon, A. Pelton and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  45. 47. T. Coetsee, R.J. Mostert, P.G.H. Pistorius and P.C. Pistorius: J. Mater. Res. Technol., 2021, vol. 11, pp. 2021–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant Nos. U20A20277, 51861130361, 51861145312, 51850410522, 5201101443, and 52011530180), Newton Advanced Fellowship by the Royal Society (Grant No. RP12G0414), Research Fund for Central Universities (Grant Nos. N172502004 and N2025025), Xingliao Talents Program (XLYC1807024 and XLYC1802024), Liaoning Key Industrial Program (2019JH1/10100014), Regional Innovation Joint Fund of Liaoning Province (2020-YKLH-39), The Innovation Team of Northeastern University, and Royal Academy of Engineering (TSPC1070) for their financial support. This work is also funded in part by the National Research Foundation of South Africa (BRICS171211293679).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 8, 2021; May 11, 2021.

Appendix A: Thermodynamic Calculation Procedures

Appendix A: Thermodynamic Calculation Procedures

I. Calculation of SiO2 and MnO activities

Equilib module of FactSage 6.4 was employed to calculate the activities of SiO2 and MnO in the flux and slag, as follows:

  1. 1.

    FToxid database was selected.[44]

  2. 2.

    The equilibrium temperature in SAW of 2273 K was set.

  3. 3.

    Measured flux and slag compositions in Table IV were set as input.

The calculated activities are given in the insets of Figures 2 and 3.

II. Gas–Slag–Metal Equilibrium Calculations

Nominal compositions, which refer to the contents considering only the dilution effects of the BM and electrode,[26,28] were used as the input metal chemistries. Measured flux compositions were set as input oxide chemistries (see Table IV). Then, Equilib module of FactSage 6.4 was employed to perform gas-slag-metal equilibrium calculations following the settings in our previous study:[27,45]

  1. 1.

    FToxid, Fstel, and FactPS databases were selected.

  2. 2.

    The equilibrium temperature in SAW of 2273 K was set.[44]

  3. 3.

    The mass ratio of flux to the electrode was set as unity.

Parts of the gas compositions calculated from gas-slag-metal equilibrium are summarized in Table AI (with vol pct values higher that 10-6). Distributions of Si and Mn from the flux into different phases calculated from gas-slag-metal equilibrium are summarized in Tables AII and AIII. The calculated liters of gases generated per 100 grams of flux at temperature 2273 K are given in Table AIV.

Table AI Gas-slag-metal Equilibrium Gas Components
Table AII Distribution of Si From Flux Into Different Phases (Mass Fraction)
Table AIII Distribution of Mn From Flux Into Different Phases (Mass Fraction)
Table AIV Liters of Gases Generated Per 100 Grams of Flux

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, C. & Coetsee, T. Thermodynamic Evaluation of Element Transfer Behaviors for Fused CaO-SiO2-MnO Fluxes Subjected to High Heat Input Submerged Arc Welding. Metall Mater Trans B 52, 1937–1944 (2021). https://doi.org/10.1007/s11663-021-02221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02221-7

Navigation