Skip to main content
Log in

Experimental Phase Equilibria Studies in the FeO-Fe2O3-CaO-Al2O3 System in Air

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The CaO·3(Al,Fe)2O3, (C(A,F)3), phase forms a solid solution in the FeO-Fe2O3-CaO-Al2O3 system and is an end member of the SFCA (Silico-Ferrite of Calcium and Aluminum) suite of solid solutions observed in industrial iron ore sinters. SFCA acts as a bonding phase in these sinter materials so an accurate description of the phase equilibria and thermodynamic properties of this phase can be used to assist in the design and operation of Fe-sintering and Fe-making processes. New experimental data are reported on the liquidus and sub-liquidus phase equilibria in the iron-rich region of the FeO-Fe2O3-CaO-Al2O3 system in air. The study was undertaken using equilibration/quenching and microanalysis techniques enabling the compositions of the liquid and solid phases in equilibrium at high temperature to be directly and accurately measured. The compositional limits of the C(A,F)3 phase and associations with the primary phase fields of CA [CaO·(Al,Fe)2O3], CA2 [CaO·2(Al,Fe)2O3], CA6 [CaO·6(Al,Fe)2O3], Hematite [(Fe,Al)2O3], Spinel [(Fe,Ca)O·(Fe,Al)2O3)], C2F [2CaO·(Fe,Al)2O3], C2F3A (2CaO·3Fe2O3·Al2O3), CF [CaO·(Fe,Al)2O3], and CF2 [CaO·2(Fe,Al)2O3] have been determined in the high-iron, low-melting temperature region of the system. The C(A,F)3 is found to be stable over a wide range of temperatures (1213 °C to 1400 °C) and alumina compositions (3.3 to 33.6 mol pct AlO1.5). The solid-phase C2F3A (2CaO·3Fe2O3·Al2O3), which is isostructural to SFCA-I indicated by previous researchers, has been found to be stable up to 1225 °C in the FeO-Fe2O3-CaO-Al2O3 system in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Dawson, Ironmak. Steelmak. 1993, vol. 20, pp. 137-143.

    Google Scholar 

  2. M.I. Pownceby, J.M.F. Clout and M.J. Fisher-White, Trans. Instn Min. Metall. Sect.C: Mineral Process Extr. Metall. 1998, vol. 107, pp. C1-C9.

  3. J. Chen, M. Shevchenko, P. Hayes and E. Jak, ISIJ Int. 2018, vol. 59, pp. 795-804.

    Article  Google Scholar 

  4. S. Cheng, M. Shevchenko, Peter C. Hayes and E. Jak, Metall. Mater. Trans. B 2019, vol. 51, pp. 1587–1602.

  5. J. Chen, M. Shevchenko, P. Hayes and E. Jak, ISIJ Int. 2019, vol. 59, pp. 805-809.

    Article  CAS  Google Scholar 

  6. M. I. Pownceby and J. M. F. Clout, Trans. Inst. Min. Metall., Sect. C 2000, vol. 109, pp. C36-C48.

  7. A. Burdese and C. Brisi, Annali Chim. 1961, vol. 41, pp. 564-568.

    Google Scholar 

  8. J. Chen, S. Cheng, M. Shevchenko, P. C. Hayes and E. Jak, Metall. Mater. Trans. B 2021, vol. 52, pp. 517-527.

    Article  Google Scholar 

  9. W. C. Hansen, L. T. Brownmiller and R. H. Bogue, J. Am. Chem. Soc. 1928, vol. 50, pp. 396-406.

    Article  CAS  Google Scholar 

  10. H. F. McMurdie, J. Research NBS 1937, vol. 18, pp. 475-484.

    CAS  Google Scholar 

  11. C. Brisi, Annali Chim. 1954, vol. 44, p. 510.

  12. T. F. Newkirk and R. D. Thwaite, J. Res. Nat. Bur. Stand. 1958, vol. 61, pp. 233-245.

    Article  CAS  Google Scholar 

  13. C. M. Schlaudt and D. M. Roy, Nature (London) 1965, vol. 206, p. 819.

    Article  CAS  Google Scholar 

  14. T. R. C. Patrick and M. I. Pownceby, Metall. Mater. Trans. B 2002, vol. 33B, pp. 79-89.

    Article  CAS  Google Scholar 

  15. M. Allibert, H. Gaye, J. Geiseler, D. Janke, B. J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K. C. Mills, D. Neuschutz, R. Parra, C. Saint-Jours, P. J. Spencer, M. Susa, M. Tmar and E. Woermann: Slag Atlas, 1995, p. 127.

  16. R. R. Dayal and F. P. Glasser, Sci. Ceram. 1967, vol. 3, pp. 199, 203, 205-207.

  17. D. H. Lister and F. P. Glasser, Trans. Brit. Ceram. Soc. 1967, vol. 66, pp. 293-305.

    CAS  Google Scholar 

  18. T. Y. Malysheva, I. V. Ostrovskaya, V. Y. Lyadova, M. S. Model and V. I. Ponomarev, Izv. Akad. Nauk SSSR, Met. 1976, vol. No 5, pp. 78-86.

  19. A. V. Arakcheeva, O. G. Karpinskii and V. Ya. Lyadova, Kristallografiya 1991, vol. 36, pp. 603-611.

    CAS  Google Scholar 

  20. A. V. Arakcheeva, Zh. Strukt. Khim. (Zhurnal Strukturnoi Khimii) 1994, vol. 35, pp. 85-96.

    CAS  Google Scholar 

  21. W. G. Mumme, Neues Jahrb. Mineral., Abh. 2003, vol. 178, pp. 307-335.

  22. W. G. Mumme, J. M. F. Clout and R. W. Gable, Neues Jahrb. Mineral., Abh. 1998, vol. 173, pp. 93-117.

  23. W. G. Mumme, Neues Jahrb. Mineral., Monatsh. 1988, pp. 359-66.

  24. J. D. G. Hamilton, B. F. Hoskins, W. G. Mumme, W. E. Borbidge and M. A. Montague, Neues Jahrb. Mineral., Abh. (Neues Jahrbuch fuer Mineralogie, Abhandlungen) 1989, vol. 161, pp. 1-26.

  25. S. Nicol, J. Chen, M. I. Pownceby and Nathan A. S. Webster, ISIJ int. 2018, vol. 58, pp. 2157-72.

  26. E. Jak, P. C. Hayes and H. G. Lee, Met. Mater. (Seoul, Repub. Korea) 1995, vol. 1, pp. 1-8.

  27. E. Jak, In 9th Intl. Conf. on Molten Slags, Fluxes and Salts (MOLTEN12), The Chinese Society for Metals: Beijing, China, 2012, p. W077.

  28. J. Chen, M. Shevchenko, P.C. Hayes and E. Jak, ISIJ Int. 2019, vol. 59, pp. 795-804.

    Article  CAS  Google Scholar 

  29. M. Shevchenko and E. Jak, Metall. Mater. Trans. B, 2019, vol. 50, pp. 2780-2793.

    Article  Google Scholar 

  30. M. Shevchenko and E. Jak, Ceram. Int. 2019, vol. 45, pp. 6795-6803.

    Article  CAS  Google Scholar 

  31. J. Philibert, X-Ray Opt. X-Ray Microanal., 3rd Intl. Symp., Stanford Univ. 1963, pp. 379-92.

  32. P. Duncumb and S.J.B. Reed: Quantitative Electron Probe Microanalysis, 6th ed., K.F.J. Heinrich, ed., NBS Spec. Publ. 298, US Dept. Commerce, 1968, pp. 133–54.

  33. P. Duncumb, Electron Microsc. Anal., Proc. Anniv. Meet., 25th 1971, pp. 132-37.

  34. S. Nikolic, P. C. Hayes and E. Jak, Metall. Mater. Trans. B, 2009, vol. 40B, pp. 892-899.

    Article  CAS  Google Scholar 

  35. A. Fallah-Mehrjardi, T. Hidayat, P. C. Hayes and E. Jak, Metall. Mater. Trans. B 2017, vol. 48, pp. 3002-3016.

    Article  Google Scholar 

  36. M. Shevchenko and E. Jak, J. Phase Equilib. Diff. 2019, vol. 40, pp. 319-355.

    Article  CAS  Google Scholar 

  37. M. Timucin and A. E. Morris, Metall. Trans. 1970, vol. 1, pp. 3193-3201.

    CAS  Google Scholar 

  38. E. Jak, P. Hayes, A. D. Pelton and S. A. Decterov, In Proc. VIII Int’l Conf. on Molten Slags, Fluxes and Salts, (Santiago, Chile, 2009), pp 473-90.

  39. S. A. Decterov, I.-H. Jung, E. Jak, Y.-B. Kang, P. Hayes and A. D. Pelton, In SAIMM Symposium Series S36 (VII Int. Conf. on Molten Slags, Fluxes & Salts), ed. C. Pistorius (The South African Institute of Mining and Metallurgy, Johannesburg, Republic of South Africa: 2004), pp 839-50.

  40. FactSage. (Ecole Polytechnique, Montréal, http://www.factsage.com/, 2008).

  41. G. Eriksson and A. D. Pelton, Metall. Trans. 1993, vol. 24, pp. 807-816.

    Article  Google Scholar 

  42. V. Prostakova, D. Shishin, M. Shevchenko and E. Jak, Calphad 2019, vol. 67, p. 101680.

    Article  CAS  Google Scholar 

  43. T. Hidayat, D. Shishin, S.A. Decterov and E. Jak, Metall. Trans. B 2016, vol. 47, pp. 256-281.

    Article  Google Scholar 

  44. S. Cheng, M. Shevchenko, P.C. Hayes and E. Jak, Experimental Phase Equilibria Studies in the FeO-Fe2O3-CaO system, private communication, PYROSEARCH, The University of Queensland, Brisbane, QLD, 2020.

    Google Scholar 

  45. R. W. Nurse, J. H. Welch and A. J. Majumdar, Trans. Brit. Ceram. Soc. 1965, vol. 64, pp. 409-418.

    CAS  Google Scholar 

  46. R. W. Nurse, J. H. Welch and A. J. Majumdar, Trans. Brit. Ceram. Soc. 1965, vol. 64, pp. 323-332.

    CAS  Google Scholar 

  47. D. Shishin, V. Prostakova, E. Jak and S. Decterov, Metall. Mater. Trans. B 2016, vol. 47, pp. 397-424.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Australian Research Council Linkage Program and Altonorte Glencore, Atlantic Copper, Aurubis, Olympic Dam Operation BHP Billiton, Kazzinc Glencore, PASAR Glencore, Outotec Oy (Espoo), Anglo American Platinum, Umicore, and Kennecott Rio Tinto for financial support to enable this research to be carried out, the Centre for Microscopy and Microanalysis, at the University of Queensland for providing electron microscope facilities and the scientific and technical assistance, and Ms. Suping Huang, Ms. Marina Chernishova, and Mr. Shuyi Lou for assistance in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 4, 2020; accepted April 18, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Shevchenko, M., Hayes, P.C. et al. Experimental Phase Equilibria Studies in the FeO-Fe2O3-CaO-Al2O3 System in Air. Metall Mater Trans B 52, 2416–2429 (2021). https://doi.org/10.1007/s11663-021-02198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02198-3

Navigation