Skip to main content
Log in

A Numerical Study on Blowing Characteristics of a Dynamic Free Oxygen Lance Converter for Hot Metal Dephosphorization Technology Using a Coupled VOF-SMM Method

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Numerical simulations are performed to explore the basic blowing characteristics of a dynamic free lance converter applied to hot metal dephosphorization technology, in which the sliding mesh model (SMM) is used to regulate the rotation motion of the top lance and the volume of fluid (VOF) model is inducted to simulate flows of gaseous oxygen, liquid slag and metal. The fundamental phenomena such as the motion of phase interfaces, slag–metal emulsion and mixing, and shape and magnitude of the velocity field inside the slag–metal bath are predicted reasonably well, and effects of lance designs including the lance twist angle and rotation speed on the blowing characteristics are evaluated. The results show that the rotation motion of the lance improves the flows inside the molten bath and induces remarkable circumferential and swirl flows around the hot spot. Such flows change the splashing mode and accelerate the dispersion of the splashed metal inside the slag layer, consequently producing a quite uniform distribution of metal phase in emulsion and promoting slag–metal emulsion and mixing. The slag–metal emulsion is strengthened when increasing the lance twist angle, but achieves its minimum at the lance rotation speed of 1.0472 rad/s. The effects of the lance twist angle and rotation speed on flow fields inside the molten bath vary with the bath depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1.R. Sambasivam, S.N. Lenka, F. Durst, M. Bock, S. Chandra and S.K. Ajmani: Metall. Mater. Trans. B, 2007, Vol. 38, pp. 45-53.

    Article  CAS  Google Scholar 

  2. 2.M.M. Li, Q. Li, Z.S. Zou and X.Z. An: Metall. Mater. Trans. B, 2017, Vol. 48, pp. 713-25.

    Article  Google Scholar 

  3. 3.S. Banya, M. Hino, R. Nagabayashi and O. Terayama: Tetsu-to-Hagané, 1989, vol. 75, pp. 66-73.

    Article  CAS  Google Scholar 

  4. 4.M. Miyata, T. Tamura, and Y. Higuchi: ISIJ Int. 2017, vol. 57, pp. 1751-55.

    Article  CAS  Google Scholar 

  5. 5.M. Miyata, T. Tamura, and Y. Higuchi: ISIJ Int. 2017, vol. 57, pp. 1756-61.

    Article  CAS  Google Scholar 

  6. 6.M. Miyata, and Y. Higuchi: ISIJ Int. 2017, vol. 57, pp. 1742-50.

    Article  CAS  Google Scholar 

  7. M.M. Li, L. Li, B. Zhang, Q. Li, W. Wu and Z.S Zou, Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1718-30.

  8. 8.R. B. Banks and A. Bhavamai: J. Fluid Mech., 1965, vol. 23, pp. 229-40.

    Article  Google Scholar 

  9. 9.F. Qian, R. Mutharasan and B. Farouk: Metall. Trans. B, 1996, vol. 27B, pp. 911-20.

    Article  CAS  Google Scholar 

  10. 10.M.J. Luomala, T.M.J. Fabritius, E.O. Virtanen, T.P. Siivola, T.L.J. Fabritius, H. Tenkku and J.J. Härkki: ISIJ Int. 2002, vol. 42, pp. 1219-24.

    Article  CAS  Google Scholar 

  11. 11.M.J. Luomala, T.M.J. Fabiritius, and J.J. Harkki: ISIJ Int., 2004, vol. 44, pp. 809-16.

    Article  CAS  Google Scholar 

  12. 12.S. Sabah and G.A. Brooks: ISIJ Int. 2014, vol. 54, pp. 836-44.

    Article  CAS  Google Scholar 

  13. 13.S. Sabah and G.A. Brooks: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 863-72.

    Article  Google Scholar 

  14. M.M. Li, Q. Li, S.B. Kuang and Z.S. Zou: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 116-26.

    Article  Google Scholar 

  15. 15.H.J. Odenthal, U. Falkenreck and J. Schlüter: ECCOMAS CFD Conference Proceedings, TU Delft, The Netherlands, 2006.

    Google Scholar 

  16. 16.H.J. Odenthal, J. Kempken, J. Schluter and W.H. Emling: Iron Steel Technol. 2007, vol. 4, pp. 71-89.

    CAS  Google Scholar 

  17. 17.M. Ersson, A. Tilliander, L. Jonsson and P. Jönsson: ISIJ Int. 2008, vol. 48, pp. 377-84.

    Article  CAS  Google Scholar 

  18. 18.H. Y. Hwang and G. A. Irons: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 575-91.

    Article  Google Scholar 

  19. 19.M. Alam, J. Naser, G. Brooks and A. Fontana: ISIJ Int. 2012, vol. 52, pp. 1026-35.

    Article  CAS  Google Scholar 

  20. 20.Y. Lytvynyuk, J. Schenk, M. Hiebler and A. Sormann: Steel Res. Int. 2014, vol. 85, pp. 537-43.

    Article  CAS  Google Scholar 

  21. 21.Y. Doh, P. Chapelle, A. Jardy, G. Djambazov, K. Pericleous, G. Ghazal and P. Gardin, Metall. Mater. Trans. B, 2013, vol. 44B, pp. 653-70.

    Article  Google Scholar 

  22. 22.X.B. Zhou, M. Ersson, L.C. Zhong, J.K. Yu and P. Jönsson: Steel Res. Int., 2014, vol. 85, pp. 273-81.

    Article  CAS  Google Scholar 

  23. 23.Y. Li, W.T. Lou and M.Y. Zhu: Ironmak. Steelmak. 2013, vol. 40B, pp. 505-14.

    Article  Google Scholar 

  24. 24.M. Lv, R. Zhu, Y.G. Guo and Y.W. Wang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1560-71.

    Article  Google Scholar 

  25. 25.Q. Li, M.M. Li, S.B. Kuang and Z.S. Zou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1494-509.

    Article  Google Scholar 

  26. 26.M.M. Li, Q. Li, S.B. Kuang and Z.S. Zou: Ind. Eng. Chem. Res. 2016, vol. 55, pp. 3630-40.

    Article  CAS  Google Scholar 

  27. 27.G.S. Wei, R. Zhu, T. Cheng, K. Dong, L.Z. Yang and X.T. Wu: Metall. Mater. Trans. B, 2017, vol. 49B, pp. 361-74.

    Google Scholar 

  28. 28.L.L. Cao, Y.N. Wang, Q. Liu and X.M. Feng: ISIJ Int. 2018, vol. 58, pp. 573-84.

    Article  CAS  Google Scholar 

  29. 29.C.W. Hirt and B.D. Nichols: J. Comput. Phys. 1981, vol. 39, pp. 201-25.

    Article  Google Scholar 

  30. 30.J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phys. 1992, vol. 100, pp. 335-54.

    Article  CAS  Google Scholar 

  31. 31.B.E. Launder and D.B. Spalding: Lectures in Mathematical Model of Turbulence, Academic Press, London, 1972, p. 124.

    Google Scholar 

  32. 32.R. Steijl and G. Barakos: Int. J. Numer. Meth. Fluids, 2008, vol. 58, pp. 527-49.

    Article  Google Scholar 

  33. A. Bakker, R.D. Laroche, M.H. Wang and R.V. Calabrese: Chem. Eng. Res. Des. 1997, Vol. 75, pp. 42-44.

    Article  CAS  Google Scholar 

  34. FLUENT 14.0 Manual. Ansys Inc.: Canonsburg, PA, 2011.

  35. 35.O. Ubbink and R.I. Isssa: J. Comput. Phys. 1999, vol. 153, pp. 26-50.

    Article  Google Scholar 

  36. D. Price: Process Engineering of Pyrometallurgy, London: 1974, pp. 8–15.

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (51904062), the China Postdoctoral Science Foundation (2019M650056) and the Fundamental Research Funds of the Central Universities of China (N2025015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 4, 2021; accepted March 15, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Shao, L., Li, Q. et al. A Numerical Study on Blowing Characteristics of a Dynamic Free Oxygen Lance Converter for Hot Metal Dephosphorization Technology Using a Coupled VOF-SMM Method. Metall Mater Trans B 52, 2026–2037 (2021). https://doi.org/10.1007/s11663-021-02155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02155-0

Navigation