Skip to main content
Log in

Air Gap Measurement During Steel-Ingot Casting and Its Effect on Interfacial Heat Transfer

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Air gap formation during solidification greatly affects interfacial heat transfer and both must be understood quantitatively for accurate numerical simulation of casting processes, which are needed for fundamental understanding to enable quality improvements. Displacement and temperature in a 23 kg steel ingot and mold were measured simultaneously during solidification using a new experimental system. Interfacial heat transfer coefficients were extracted from the measurement results using an inverse heat conduction model. The evolution of temperature, air gap thickness, and interfacial heat transfer coefficients (IHTC) were quantified during this ingot casting process. The air gap forms earlier and grows larger on the narrow side than on the width side of the ingot. Interfacial heat transfer can be divided into four stages. In the first stage, there is good contact between the steel shell and the mold, so there is no air gap, and IHTC is high: 2700 to 3000 W m−2 °C−1. In the second stage, an air gap starts to form, so heat transfer decreases sharply. In the third stage, as the air gap thickness continues to grow, its effect weakens. In the fourth stage, even as the air gap continues to grow, IHTC remains almost constant at about 600 W m−2 °C−1. The IHTC can be predicted reasonably well with a simple equation based on conduction across the measured gap thickness, radiation, and contact resistance based on the measured roughness of the cast surface. Conduction is more important than radiation across the gap, accounting for about seventy percent of the effective IHTC at later times when the gap is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. 1. L.C. Hibbeler, M.M.C See, J. Iwasaki, K.E. Swartz, R.J. O’Malley and B.G. Thomas: Appl. Math. Model, 2016, vol. 40, pp. 8530-51.

    Article  Google Scholar 

  2. 2. W.D. Griffiths: Metall. Mater. Trans. B, 1999, vol. 30, pp. 473-82.

    Article  Google Scholar 

  3. 3. J. Kron, T. Antonsson and H. Fredriksson: Int. J. Cast Met. Res., 2002, vol. 14, pp. 275-85.

    Article  Google Scholar 

  4. 4. R. J. Sarjant and M. R. Slack: J. Iron Steel Inst., 1954, vol. 177: pp.428-44.

    Google Scholar 

  5. B. Gerin, H. Combeau, M. Založnik, I Poitrault, and M Cherif: Prediction of solidification structures in a 9.8 tonne steel ingot. MCWASP XV 2020, IOP Conference Series: Materials Science and Engineering, Volume 861, MCWASP XV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes 22-23 June 2020, Jönköping, Sweden.

  6. 6. Y. Nishida, W. Droste and S. Engler: Metall. Mater. Trans. B, 1986, vol. 17, pp. 833-44.

    Article  Google Scholar 

  7. 7. Z.G. Xu, X. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42.

    CAS  Google Scholar 

  8. 8. S.K. Choudhary, S. Ganguly, A. Sengupta and V. Sharma: J. Mater. Process. Technol., 2017, vol. 243: 312-21.

    Article  CAS  Google Scholar 

  9. 9. Y.M. Dakhoul, R. Farmer, S.L. Lehoczky and F.R. Szofran: J. Cryst. Growth, 1988, vol. 86, pp. 49-55.

    Article  CAS  Google Scholar 

  10. 10. W.M. Li, X.M. Zang, H.Y. Qi, D.J. Li and X. Deng: High Temp. Mater. Proc., 2019, vol. 38, pp. 672-82.

    Article  CAS  Google Scholar 

  11. 11. L.G. Zhu and R.V. Kumar: Ironmaking & steelmaking, 2007, vol. 34, pp.76-82.

    Article  CAS  Google Scholar 

  12. 12. K.N. Prabhu and W.D. Griffiths: Int. J. Cast Met. Res., 2001, vol. 14, pp. 147-55.

    Article  CAS  Google Scholar 

  13. 13. V.E. Bazhenov, A.V. Koltygin, Yu.V. Tselovalnik and A.V. Sannikov: Russ. J. Non-ferr met., 2017, vol. 58, pp. 114–23.

    Article  Google Scholar 

  14. 14. D. Robinson and R. Palaninathan: Finite Elem. Anal. Des., 2001, vol. 37: 85-95.

    Article  Google Scholar 

  15. 15. I. Stone, M. Ward and R.C. Reed: Mater. Sci. Forum, 2013, vol. 765, pp. 276-80.

    Article  Google Scholar 

  16. 16. J. Kron, M. Bellet, A. Ludwig, B. Pustal, J. Wendt and H. Fredriksson: Int. J. Cast Met. Res., 2004, vol. 17, pp. 295-310.

    Article  CAS  Google Scholar 

  17. 17. B.G. Thomas, I.V. Samarasekera and J.K. Brimacombe: Metall. Trans. B, 1987, vol. 18B, pp. 119-30.

    Article  CAS  Google Scholar 

  18. F. Oeters, K. Ruttiger and H.J. Selenz: Casting and Solidification of Steel, 1977, vol. 1, pp. 125-67.

  19. 19. R.E. Smelser and O. Richmond: Mod. Cast. Weld. Proc. IV, Palm Coast, FL, 1988, pp. 313-28.

  20. 20. J. Kron, A. Lagerstedt and H. Fredriksson: Int. J. Cast Met. Res., 2005, vol. 18, pp. 29-40.

    Article  CAS  Google Scholar 

  21. C. Li and Brian G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151-72.

  22. 22. F. Yigit, L.G. Hector: J. Appl. Mech., 2000, vol. 67, pp. 66-76.

    Article  Google Scholar 

  23. 23. N. Zabaras, Y. Ruan, O. Richmond: J. Appl. Mech., 1991, vol. 58, pp. 865-71.

    Article  CAS  Google Scholar 

  24. 24. S. Engler, D. Boenisch and B. Kohler: AFS Cast Metals Research Journal, 1973, vol. 9, pp. 20-30.

    CAS  Google Scholar 

  25. 25. Savage J: J. Iron Steel Inst., 1962, vol. 11, pp. 260-77.

    Google Scholar 

  26. 26. R.H. Tien and V. Koump: J. Appl. Mech., 1969, vol. 36, pp. 763-67.

    Article  CAS  Google Scholar 

  27. 27. O.Richmond and R.H.Tien: J. Mech. Phys. Solids, 1971, vol. 19, pp. 273-84.

    Article  Google Scholar 

  28. C.M. Raible, H. Fredriksson and S. Oestlund: Modelling of heat flow and solidification process in a strip caster, 2nd ed, Minerals, Metals and Materials Society, Warrendale PA, United States, 1995, pp. 817-24.

  29. 29. J. Mahmoudi and H. Fredriksson: J. Mater. Sci., 2000, vol. 35, pp. 4977-87.

    Article  CAS  Google Scholar 

  30. 30. S. Berg, J. Dahlström and H. Fredriksson: ISIJ Int., 1995, vol. 35, pp. 876-85.

    Article  CAS  Google Scholar 

  31. 31. A. Lagerstedt, J. Kron, F. Yosef, and H. Fredriksson: Mat. Sci. Eng. A, 2005, vol. 413, pp. 44-51.

    Article  Google Scholar 

  32. 32. Y. Dong, K. Bu, Y. Dou and D. Zhang: J. Mater. Process. Technol., 2011, vol. 211, pp. 2123-31.

    Article  CAS  Google Scholar 

  33. 33. C.A. Santos, J. Quaresma and A. Garcia: J. Alloys Compd., 2001, vol. 319, pp.174-86.

    Article  CAS  Google Scholar 

  34. K. Narayan Prabhu, H. Mounesh, K.M. Suresh and A. A. Ashish: Int. J. Cast Met. Res., 2003, vol.15, pp. 565–71.

  35. G. Milano and F. Scarpa: Universita di Genova, Italia, private communication, 1994.

  36. M. Rappaz, J.-L. Desbiolles, J.-M. Drezet, C.-A. Gandin, A. Jacot, and P. Thévoz: in Modeling of Casting, Welding and Advanced Solidification Processes, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 449-57.

  37. 37. J.M. Drezet, M. Rappaz, G.U. Grün and M. Gremaud: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1627-34.

    Article  Google Scholar 

  38. 38. B.G.Thomas,,I.V. Samarasekera, and J.K. Brimacombe: Metall Mater Trans B, 1987, vol. 18, pp.119–30.

    Article  Google Scholar 

  39. 39. P. Sun, W. Li and Q.L. Ji: China water transport, 2010, vol. 10, pp. 235-36.

    Google Scholar 

  40. 40. M.L. Zappulla, S.M. Cho, S. Koric, H.J. Lee, S.H. Kim and B.G. Thomas: J. Mater. Process. Technol., 2020, vol. 278, pp. 1-14.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully express their appreciation to Natural Science Foundation of China (Nos. 51974153, U1960203, 51974156), the Joint Fund of State key Laboratory of Marine Engineering and University of Science and Technology Liaoning (SKLMEA-USTLN-201901, SKLMEA-USTL-201707), and the China Scholarship Council (201908210457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 14, 2020; accepted March 13, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, L., Geng, Y. et al. Air Gap Measurement During Steel-Ingot Casting and Its Effect on Interfacial Heat Transfer. Metall Mater Trans B 52, 2224–2238 (2021). https://doi.org/10.1007/s11663-021-02152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02152-3

Navigation