Skip to main content
Log in

Reducing Carbon Contamination by Controlling CO32− Formation During Electrochemical Reduction of TiO2

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Molten salt electrolysis is a clean and low-cost Ti production technology that allows the direct conversion of metal oxides into metals or alloys via electrochemical reduction. However, carbon contamination can always be found due to the formation of CO32− and erosion of the graphite anode during electrolysis. Herein, we explore the reduction of carbon contamination by controlling CO32− formation. By adjusting the electrolyte composition, it is possible to improve the wettability between the molten salt and the anode and reduce the O2− solubility in molten salt to reduce CO32− formation. This approach reduces carbon contamination, and the current efficiency is also increased by adding 30 wt pct KCl to pure molten CaCl2. The carbon content in the cathode product decreased by 94 pct and the current efficiency was increased by 51 pct, compared with electrolysis in pure CaCl2 molten salt. In addition, the anode corrosion decreased, and the weight loss of the graphite anode decreased by approximately 65 pct after 18 hours of electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. G Z Chen, D J Fray and T W Farthing, Nature 2000, vol. 407, pp. 361-364.

    Article  CAS  Google Scholar 

  2. 2. D. Hu, A. Dolganov, M. Ma, B. Bhattacharya, M. T. Bishop and G. Z. Chen, JOM 2018, vol. 70, pp. 129-137.

    Article  CAS  Google Scholar 

  3. 3. Carsten Schwandt, Rngreg R. Doughty and Rnderek J. Fray, Key Eng. Mater. 2010, vol. 436, pp. 13-25.

    CAS  Google Scholar 

  4. 4. K. Dring, R. Bhagat, M. Jackson, R. Dashwood and D. Inman, J. Alloys Compd. 2006, vol. 419, pp. 103-109.

    Article  CAS  Google Scholar 

  5. D. Vishnu, N. Sanil, L. Shakila, G. Panneerselvam, R. Sudha, K. S. Mohandas and K. Nagarajan, Electrochim. Acta 2013, 100, 51-62.

    Article  CAS  Google Scholar 

  6. R. O. Suzuki, H. Noguchi, Y. Haraguchi, S. Natsui and T. Kikuchi, ECS Trans. 2018, 86, 45.

    Article  CAS  Google Scholar 

  7. 7. C. Schwandt, D. T. L. Alexander and D. J. Fray, Electrochim. Acta 2009, vol. 54, pp. 3819-3829.

    Article  CAS  Google Scholar 

  8. 8. Liwen Hu, Song Yang, Jianbang Ge, Jun Zhu, Zhenchao Han and Shuqiang Jiao, Journal of Materials Chemistry A 2017, vol. 5, pp. 6219-6225.

    Article  Google Scholar 

  9. 9. L. Hu, Y. Song, S. Jiao, Y. Liu, J. Ge, H. Jiao, J. Zhu, J. Wang, H. Zhu and D. J. Fray, ChemSusChem 2016, vol. 9, pp. 588-594.

    Article  CAS  Google Scholar 

  10. 10. C. Schwandt, Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy 2013, vol. 122, pp. 213-218.

    CAS  Google Scholar 

  11. 11. K. S. Mohandas, Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy 2013, vol. 122, pp. 195-212.

    CAS  Google Scholar 

  12. 12. W. Weng, M. Wang, X. Gong, Z. Wang, D. Wang and Z. Guo, J. Electrochem. Soc. 2017, vol. 164, pp. E360-E366.

    Article  CAS  Google Scholar 

  13. 13. T. Matsuzaki, S. Natsui, T. Kikuchi and R. O. Suzuki, Mater. Trans 2017, vol. 58, pp. 371-376.

    Article  CAS  Google Scholar 

  14. 14. D. Tang, K. Zheng, H. Yin, X. Mao, D. R. Sadoway and D. Wang, Electrochim. Acta 2018, vol. 279, pp. 250-257.

    Article  CAS  Google Scholar 

  15. 15. S. Jiao and D. J. Fray, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 2010, vol. 41, pp. 74-79.

    Article  CAS  Google Scholar 

  16. 16. R. Barnett, K. T. Kilby and D. J. Fray, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 2009, vol. 40, pp. 150-157.

    Article  CAS  Google Scholar 

  17. 17. M. Alzamani and K. Jafarzadeh, Oxid. Met. 2018, vol. 89, pp. 623-640.

    Article  CAS  Google Scholar 

  18. 18. Y. Sakamura and M. Iizuka, Electrochim. Acta 2016, vol. 189, pp. 74-82.

    Article  CAS  Google Scholar 

  19. 19. K. T. Kilby, S. Jiao and D. J. Fray, Electrochim. Acta 2010, vol. 55, pp. 7126-7133.

    Article  CAS  Google Scholar 

  20. 20. Subrat Das, Lanka Dinushke Weerasiri and William Yang, Colloids Surf. A 2017, vol. 516, pp. 23-31.

    Article  CAS  Google Scholar 

  21. 21. Zhibin Zhao, Bingliang Gao, Yuqing Feng, Yipeng Huang, Zhaowen Wang, Zhongning Shi and Xianwei Hu, JOM 2017, vol. 69, pp. 281-291.

    Article  CAS  Google Scholar 

  22. 22. Laurent Cassayre, Torstein A. Utigard and Sylvie Bouvet, JOM 2002, vol. 54, pp. 41-45.

    Article  CAS  Google Scholar 

  23. 23. V. Tomkute, A. Solheim and E. Olsen, Energy Fuels 2014, vol. 28, pp. 5345-5353.

    Article  CAS  Google Scholar 

  24. 24. Dihua Wang, Bowen Deng, Zhigang Chen, Muxing Gao and Xuhui Mao, Faraday Discuss. 2016, vol. 190, pp. 241-258.

    Article  Google Scholar 

  25. 25. Xiao Y. Yan and Derek J. Fray, J. Appl. Electrochem. 2009, vol. 39, pp. 1349-1360.

    Article  CAS  Google Scholar 

  26. 26. X. Y. Yan and D. J. Fray, Metall. Mater. Trans. B 2002, vol. 33, pp. 685-693.

    Article  CAS  Google Scholar 

  27. 27. E Gordo, G Z Chen and D J Fray, Electrochim. Acta 2004, vol. 49, pp. 2195-2208.

    Article  CAS  Google Scholar 

  28. 28. Shuqiang Jiao and Hongmin Zhu, J. Alloys Compd 2007, vol. 438, pp. 243-246.

    Article  CAS  Google Scholar 

  29. 29. Shulan Wang, Shichao Li, Longfei Wan and Chuanhua Wang, Int. J. Min. Met. Mater 2012, vol. 19, pp. 212-216.

    Article  Google Scholar 

  30. 30. M. Yang, X. Lv, R. Wei, J. Xu and C. Bai, Metall. Mater. Trans. B 2018, vol. 49, pp. 1331-1345.

    Article  Google Scholar 

  31. 31. Donald A. Wenz, Irving Johnson and Raymond D. Wolson, J. Chem. Eng. Data 1969, vol. 14, pp. 250-252.

    Article  CAS  Google Scholar 

  32. 32. Carsten Schwandt and Derek J. Fray, Ztschrift Für Naturforschung A 2007, vol. 62, pp. 655-670.

    Article  CAS  Google Scholar 

  33. 33. George S Perry and Lindsay G Macdonald, J. Nucl. Mater. 1985, vol. 130, pp. 234-241.

    Article  Google Scholar 

  34. M. A. Cooksey, M. P. Taylor and J. J. J. Chen, JOM 2008, 60, 51-57.

    Article  CAS  Google Scholar 

  35. 35. M. Ma, D. Wang, W. Wang, X. Hu, X. Jin and G. Z. Chen, J. Alloys Compd. 2006, vol. 420, pp. 37-45.

    Article  CAS  Google Scholar 

  36. 36. Zhongren Zhou, Yingjie Zhang, Yixin Hua, Peng Dong, Cunying Xu, Yan Li and Ding Wang, Electrochim. Acta 2018, vol. 271, pp. 490-497.

    Article  CAS  Google Scholar 

  37. 37. J. Sure, A. R. Shankar, S. Ramya, C. Mallika and U. K. Mudali, Carbon 2014, vol. 67, pp. 643-655.

    Article  CAS  Google Scholar 

  38. D. Vishnu, J. Sure and K. S. Mohandas, Carbon 2015, 93, 782-792.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially support by the National Natural Science Foundation of China (Grant No. 51674054), and supported by the Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meilong Hu or Liwen Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 18, 2020, accepted January 3, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Luo, X., Yang, Y. et al. Reducing Carbon Contamination by Controlling CO32− Formation During Electrochemical Reduction of TiO2. Metall Mater Trans B 52, 1061–1070 (2021). https://doi.org/10.1007/s11663-021-02078-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02078-w

Navigation