Skip to main content
Log in

A Partitioned Solution Algorithm for Concurrent Computation of Stress–Strain and Fluid Flow in Continuous Casting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Control of macrosegregation phenomena and deformation-related defects is a main issue in steel continuous casting. Numerical simulation could help industrial engineers to master these defects. However, as a first step, it is essential to achieve a concurrent computation of fluid flow in the bulk liquid and stress-strain evolution in the already solidified regions. With this aim in view, a new specific partitioned solver has been developed to model the liquid flow, essentially induced by the inlet jet distributed by the submerged nozzle, as well as the thermal deformation of the solid shell. The solver procedure allows simulating the transient regime, up to convergence to the steady-state regime. For this purpose, the computational finite element mesh moves and grows continuously. Within this evolving mesh, three different zones are defined: the solid shell as a pure Lagrangian zone, the liquid nozzle region as a pure Eulerian zone, and an intermediate Eulerian–Lagrangian zone. Conservation equations (energy, mass, and momentum) are solved in a general arbitrary Lagrangian–Eulerian framework, with a level-set formulation to track the free surface evolution at the meniscus. The article is composed of two parts. In the first part, the model is detailed with the resolution steps involved in the coupled resolution approach. In the second part, a simple verification test case is firstly proposed, followed by a more relevant and practical application to model an industrial pilot continuous casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.G. Thomas, L.J. Mika, F.M. Najjar, Metall. Trans. B 21B, 387–400 (1990)

    Article  CAS  Google Scholar 

  2. F.M. Najjar, B.G. Thomas, D.E. Hershey, Metall. Mater. Trans. B 26B, 749–765 (1995)

    Article  CAS  Google Scholar 

  3. R. Vertnik, B. Šarler, Eng. Anal. Bound. Elements 45, 45–61 (2014)

    Article  Google Scholar 

  4. C. Pfeiler, M. Wu, A. Ludwig, Mater. Sci. Eng. A 413, 115–120 (2005)

    Article  Google Scholar 

  5. P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, ISIJ Int. 50, 425–434 (2010)

    Article  CAS  Google Scholar 

  6. M.R. Aboutalebi, M. Hasan, R.I.L. Guthrie, Metall. Mater. Trans. B 26B, 731–744 (1995)

    Article  CAS  Google Scholar 

  7. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, Y. Fautrelle, Metall. Mater. Trans. B 41B, 193–208 (2010)

    Article  CAS  Google Scholar 

  8. F. Pascon, A.-M. Habraken, Comput. Meth. Appl. Mech. Eng. 196, 2285–2299 (2007)

    Article  Google Scholar 

  9. L.C. Hibbeler, B.G. Thomas, R.C. Schimmel, G. Abbel, Metall. Mater. Trans. B 43B, 1156–1172 (2012)

    Article  Google Scholar 

  10. M. Bellet, A. Heinrich, ISIJ Int. 44, 1686–1695 (2004)

    Article  CAS  Google Scholar 

  11. T. Koshikawa, M. Bellet, C.-A. Gandin, H. Yamamura, M. Bobadilla, Acta Mater. 124, 513–527 (2017)

    Article  CAS  Google Scholar 

  12. M.L.S. Zappulla, S.-M. Cho, S. Koric, H.-J. Lee, S.-H. Kim, B.G. Thomas, J. Mater. Proces. Tech. 278, 116469 (2020)

    Article  CAS  Google Scholar 

  13. S. Koric, L.C. Hibbeler, R. Liu, B.G. Thomas, Numer. Heat Transfer Part B 58, 371–392 (2010)

    Article  CAS  Google Scholar 

  14. M. Heil, A.L. Hazel, J. Boyle, Comput. Mech. 43, 91–101 (2008)

    Article  Google Scholar 

  15. S. Zhang, G. Guillemot, C.-A. Gandin, M. Bellet, Comput. Meth. Appl. Mech. Eng. 356, 294–324 (2019)

    Article  Google Scholar 

  16. V.D. Fachinotti, S. Le Corre, N. Triolet, M. Bobadilla, M. Bellet, Int. J. Num. Meth. Eng. 67, 1341–1384 (2006)

    Article  Google Scholar 

  17. A. Ludwig, A. Vakhrushev, M. Wu, T. Holzmann, A. Kharicha, Trans. Indian Inst. Metals 68, 1087–1094 (2015)

    Article  CAS  Google Scholar 

  18. C.M.G. Rodrigues, A. Ludwig, M. Wu, A. Kharicha, A. Vakhrushev, Metall. Mater. Trans. B 50B, 1334–1350 (2019)

    Article  Google Scholar 

  19. M. Bellet and B.G. Thomas: Materials Processing Handbook, CRC Press, Taylor and Francis, 2007, Chapter 27, pp. 27-1 – 27-26.

  20. A. Saad, C.-A. Gandin, M. Bellet, Comput. Mater. Sci. 99, 221–231 (2015)

    Article  CAS  Google Scholar 

  21. J. Ni, C. Beckermann, Metall. Trans. B 22B, 349–361 (1991)

    Article  CAS  Google Scholar 

  22. P.C. Carman: Chem. Eng. Res. Design: Trans. Instit. Chem. Eng. Part A, 1937, vol. 37, pp. 2069-79.

  23. E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, T. Coupez, J. Comp. Phys. 229, 8643–8665 (2010)

    Article  CAS  Google Scholar 

  24. M. Shakoor, B. Scholtes, P.O. Bouchard, M. Bernacki, Appl. Math. Model. 39, 7291–7302 (2015)

    Article  Google Scholar 

  25. T. Coupez, J. Comput. Phys. 230, 2391–2405 (2011)

    Article  CAS  Google Scholar 

  26. M. Henri: Modélisation 3D par éléments finis du refroidissement primaire lors de la coulée continue d’aciers (3D Finite Element Modeling of primary cooling during steel continuous casting), Ph.D. Thesis (in French), Ecole Nationale Supérieure des Mines de Paris, 2009.

  27. T.T.M. Nguyen, C.-A. Gandin, H. Combeau, M. Založnik, M. Bellet, Metall. Mater. Trans. A 49A, 1725–1748 (2018)

    Article  Google Scholar 

  28. B.G. Thomas, R. O’Malley, D. Stone: MCWASP VIII Conf. Proc., 1998, TMS, p.1185.

  29. C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig, A. Kharicha: Steel Research Int., 2006, vol. 77, No.7

  30. J.M. Risso, A.E. Huespe, A. Cardona, Int. J. Numer. Meth. Eng. 65, 1355–1377 (2006)

    Article  Google Scholar 

  31. M.L.S. Zappulla, L.C. Hibbeler, B.G. Thomas, Metall. Mater. Trans. A 48A, 3777–3793 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Space Agency – ESTEC (Netherlands) under the projects CCEMLCC (Grant AO-2004-017) and industrial partners ARCELORMITTAL Maizières Research, APERAM ALLOYS IMPHY and INDUSTEEL. The authors would also like to thank Prof. Brian G. Thomas (Colorado School of Mines, and University of Illinois), for fruitful exchanges during the revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bellet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 27, 2020; Accepted December 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Guillemot, G., Gandin, CA. et al. A Partitioned Solution Algorithm for Concurrent Computation of Stress–Strain and Fluid Flow in Continuous Casting Process. Metall Mater Trans B 52, 978–995 (2021). https://doi.org/10.1007/s11663-021-02070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02070-4

Navigation