Skip to main content
Log in

Foaming Mg Alloy and Composite Using MgCO3 Blowing Agent

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present work reports on foaming of magnesium alloys and composites using MgCO3 as the blowing agent. Foaming was done via the molten metal route by direct addition of MgCO3 in molten Mg. The alloys and composites required for foaming were prepared by varying the concentration of aluminum (10 to 30 wt pct) and calcium (0 and 2 wt pct) in Mg. SiC of 10-µm size and about 10 to 20 vol pct was added as reinforcement particles in the composite. The liquidus temperature of the alloys and composites, the decomposition behavior of MgCO3, and the intrinsic oxides that formed in the melt have a significant effect on the structure of the foams. Mg alloys and composites with 30 wt pct Al showed better foaming behavior with higher expansion, lower density, good cell structure, and uniform cell size distribution due to the smaller difference between their liquidus temperature and the decomposition temperature of MgCO3. The addition of 2 wt pct Ca showed a significant effect on foaming, and the MgO and MgAl2O4 (spinel) particles formed in situ in the molten Mg during foaming acted as the stabilizing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. ALPORAS is the trademark of Aluminium foams manufactured by Shinko Wire Company Ltd, Japan.

References

  1. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Article  CAS  Google Scholar 

  2. J. Banhart and H.W. Seeliger: Adv. Eng. Mater., 2008, vol. 10, pp. 793–802.

    Article  CAS  Google Scholar 

  3. J. Banhart, G.S. VinodKumar, P.H. Kamm, T.R. Neu, and F. GarcíaMoreno: Ciência Tecnol. Dos. Mater., 2016, 28, 1–4.

    Article  Google Scholar 

  4. D.H. Yang, Y. Shang-Run, W. Hui, M. Ai-Bin, J. Jing-Hua, C. Jian-Qing, and W. Ding-Lie: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5405–09.

    Article  Google Scholar 

  5. C. Körner, M. Hirschmann, V. Bräutigam, and R.F. Singer: Adv. Eng. Mater., 2004, vol. 6, pp. 385–90.

    Article  Google Scholar 

  6. K. Renger and H. Kaufmann: Adv. Eng. Mater., 2005, vol. 7, pp. 117–23.

    Article  CAS  Google Scholar 

  7. D.H. Yang, B.Y. Hur, and S.R. Yang: J. Alloys Compd., 2008, vol. 461, pp. 221–27.

    Article  CAS  Google Scholar 

  8. Z.G. Xu, J.W. Fu, T.J. Luo, and Y.S. Yang: Mater. Des., 2012, vol. 34, pp. 40–44.

    Article  Google Scholar 

  9. X. Xia, W. Zhao, X. Feng, H. Feng, and X. Zhang: Mater. Des., 2013, vol. 49, pp. 19–24.

    Article  CAS  Google Scholar 

  10. X. Xia, W. Zhao, Z. Wei, and Z. Wang: Mater. Des., 2012, vol. 42, pp. 32–36.

    Article  CAS  Google Scholar 

  11. F.W. Bach, D. Bormann, and P. Wilk: Cellular Metals and Metal Foaming Technology, MIT-Verlag, Bonn, Germany, 2003, p. 215.

    Google Scholar 

  12. T.R. Neu, M. Mukherjee, F. Garcia Moreno, and J. Banhart: in Porous Metals and Metallic Foams, B.Y. Hur, B.K. Kim, S.E. Kim, and S.K. Hyun, eds., G.S. Intervision, Seoul, 2012, pp. 139–46.

  13. E. Aghion and Y. Perez: Mater. Charact., 2014, vol. 96, pp. 78–83.

    Article  CAS  Google Scholar 

  14. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina: Scripta Mater., 2001, vol. 45, pp. 1147–53.

    Article  CAS  Google Scholar 

  15. X. Xia, J. Feng, J. Ding, K. Song, X. Chen, W. Zhao, and B.Y. Hur: Mater. Des., 2015, vol. 74, pp. 36–43.

    Article  CAS  Google Scholar 

  16. X.C. Xia, X.W. Chen, Z. Zhang, X. Chen, W.M. Zhao, B. Liao, and B.Y. Hur: J. Magnes. Alloy, 2013, vol. 1, pp. 330–35.

    Article  CAS  Google Scholar 

  17. D.H. Yang, C. Seo, and B.Y. Hur: J. Mater. Sci. Technol., 2008, vol. 24, pp. 302–04.

    Article  CAS  Google Scholar 

  18. H. Ji, G. Yao, H. Luo, G. Zu, and L. Liu: Rare Met., 2010, vol. 29, pp. 417–20.

    Article  CAS  Google Scholar 

  19. W.Z. Huang, H.J. Luo, Y.L. Mu, H. Lin, and H. Du: Int. J. Min. Met. Mater., 2017, vol. 24, pp. 701–07.

    Article  CAS  Google Scholar 

  20. C.H. Seo, M.J. Jeong, I.Y. Jung, and B.Y. Hur: Mater. Sci. Forum, 2008, vol. 569, pp. 273–76.

    Article  CAS  Google Scholar 

  21. S.W. Ip, S.W. Wang, and J.M. Toguri: Can. Metall. Q., 1999, vol. 38, pp. 81–92.

    Article  CAS  Google Scholar 

  22. N. Babcsán, D. Leitlmeier, H.P. Degischer, and J. Banhart: Adv. Eng. Mater., 2004, vol. 6, pp. 421–28.

    Article  Google Scholar 

  23. J. Banhart: Adv. Eng. Mater., 2006, vol. 8, pp. 781–94.

    Article  CAS  Google Scholar 

  24. G.S. VinodKumar, M. Chakraborty, F. GarciaMoreno, and J. Banhart: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2898–2908.

    Article  Google Scholar 

  25. M. Sakamoto, S. Akiyama, and K. Ogi: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1048–50.

    Article  CAS  Google Scholar 

  26. Gokan, Y., Suzuki, A., Nozawa, S., Anyanwu, I.A., Kamado, S., Kojima, Y., Takeda, S. and Ishida, T.: Mater. Sci. Forum, 2003, 419, 451–56.

    Article  Google Scholar 

  27. M. Mukherjee, U. Ramamurty, F. GarciaMoreno, and J. Banhart: Acta Mater., 2010, vol. 58, pp. 5031–42.

    Article  CAS  Google Scholar 

  28. V. Gergely, D.C. Curran, and T.W. Clyne: Compos. Sci. Technol., 2003, vol. 63, pp. 2301–10.

    Article  CAS  Google Scholar 

  29. C. Unluer and A. Al-Tabbaa: J. Therm. Anal. Calorim., 2014, vol. 115, pp. 595–607.

    Article  CAS  Google Scholar 

  30. S.H. Park, B.Y. Hur, and K.H. Song: Mater. Sci. Forum, 2005, vols. 475–479, pp. 2683–86.

    Article  Google Scholar 

  31. T. Gancarz, J. Jourdan, W. Gasior, and H. Henein: J. Mol. Liq., 2018, vol. 249, pp. 470–76.

    Article  CAS  Google Scholar 

  32. J. Bohdansky and H.E.J. Schins: J. Inorg. Nucl. Chem., 1968, vol. 30, pp. 2331–37.

    Article  CAS  Google Scholar 

  33. S.H. Park, K.H. Song, Y.S. Um, and B.Y. Hur: Mater. Sci. Forum, 2006, vol. 510, pp. 742–45.

    Article  Google Scholar 

  34. J.L. Murray: J. Phase Equilibria, 1982, vol. 3, p. 60.

    Article  Google Scholar 

  35. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Phase Diagrams, 2nd ed., ASM International, Metals Park, OH, 1990, vol. 1, p. 170.

  36. J. Medved and P. Mrvar: Mater. Sci. Forum, 2006, vol. 508, pp. 603–08.

    Article  CAS  Google Scholar 

  37. S.S. Cho, B.S. Chun, C.W.Won, S.D. Kim, B.S. Lee, H. Baek, and C. Suryanarayana: J. Mater. Sci., 1999, vol. 34, pp. 4311–20.

    Article  CAS  Google Scholar 

  38. F. Wang, T. Hu, Y. Zhang, W. Xiao, and C. Ma: Mater. Sci. Eng. A, 2017, vol. 704, pp. 57–65.

    Article  CAS  Google Scholar 

  39. R. Ninomiya, T. Ojiro, and K. Kubota: Acta Metall. Mater., 1995, vol. 43, pp. 669–74.

    Article  CAS  Google Scholar 

  40. T.B. Massalski, J.L. Murray, L.H. Bennet, and H. Baker: Binary Alloy Diagrams, 1st ed., American Society for Metals, Metals Park, OH, 1986

    Google Scholar 

  41. S.H. Ha, J.K. Lee, and S.K. Kim: Mater. Trans., 2008, vol. 49, pp. 1081–83.

    Article  CAS  Google Scholar 

  42. B. Wiese, C.L. Mendis, D. Tolnai, A. Stark, N. Schell, H.P. Reichel, R. Bruckner, K.U. Kainer, and N. Hort: J. Alloys Compd., 2015, vol. 618, pp. 64–66.

    Article  CAS  Google Scholar 

  43. Y.F. Zhu, H.M. Lu, Q. Jiang, K. Mimura, and M. Isshiki: J. Electrochem. Soc., 2007, vol. 154, pp. C153–C158.

    Article  CAS  Google Scholar 

  44. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara: Adv. Eng. Mater., 2000, vol. 2, pp. 179–83.

    Article  CAS  Google Scholar 

  45. D. Leitlmeier, H.P. Degischer, and H.J. Flankl: Adv. Eng. Mater., 2002, vol. 4, pp. 735–40.

    Article  CAS  Google Scholar 

  46. A. Ibrahim, C. Körner, and R.F. Singer: Adv. Eng. Mater., 2008, vol. 10, pp. 845–48.

    Article  CAS  Google Scholar 

  47. P.M. ProaFlores, G. MendozaSuarez, and R.A.L. Drew: J. Mater. Sci. 2012, vol. 47, pp. 455–64.

    Article  CAS  Google Scholar 

  48. I. Haginoya and T. Fukusako: Trans. Jpn. Inst. Met., 1983, vol. 24, pp. 613–19.

    Article  Google Scholar 

  49. S. Esmaeelzadeh, A. Simchi, and D. Lehmhus: Mater. Sci. Eng. A, 2006, vol. 424, pp. 290–99.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Science and Engineering Research Board, Department of Science and Technology (DST-SERB), India, for partially supporting this work through Grant No. EMR/2016/006207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vinod Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 2, 2020, accepted December 21, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhosale, D., Devikar, A., Sasikumar, S. et al. Foaming Mg Alloy and Composite Using MgCO3 Blowing Agent. Metall Mater Trans B 52, 931–943 (2021). https://doi.org/10.1007/s11663-021-02066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02066-0

Navigation