Skip to main content
Log in

Mechanochemical Ignition of Self-propagating Reactions in Zn-S Powder Mixtures

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The present work examines the mechanochemical reactivity of Zn-S powder mixtures subjected to mechanical processing by ball milling. Chemical composition, collision energy, powder charge inside the reactor, number of milling balls, Zn microstructure and temperature have been systematically varied to gain detailed information on the physical and chemical responses of reactant powders. It is shown that the mechanical activation of mixtures with intermediate Zn contents determines the ignition of self-sustaining high-temperature reactions that lead to the α and β ZnS line compounds and residual unreacted elements. Within the intermediate compositional range, ignition time decreases as the impact energy, the number of milling balls and the temperature increase and as the mass of powder decreases. In contrast, ignition times decrease as the hardness of Zn powder increases. Experimental findings are interpreted with the help of a phenomenological kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Baláž et al., Chem. Soc. Rev., 2013, 42, 7571-7637.

    Article  Google Scholar 

  2. T. H. Courtney, Mater. Trans., JIM, 1995, 36, 110–22.

  3. D. R. Maurice, T. H. Courtney, Metall. Trans. A, 1990, 21, 289-303.

    Article  Google Scholar 

  4. S. Odunuga, Y. Li, P. Krasnochtchekov, P. Bellon, R. S. Averback, Phys. Rev. Lett., 2005, 95, 045901.

    Article  CAS  Google Scholar 

  5. F. Delogu, G. Cocco, Phys. Rev. B, 2006, 74, 035406.

    Article  Google Scholar 

  6. F. Delogu, J. Appl. Phys., 2008, 104, 073533.

    Article  Google Scholar 

  7. J. Song, D. Srolovitz, J. Appl. Phys., 2008, 104, 124312.

    Article  Google Scholar 

  8. N. Q. Vo, S. Odunuga, P. Bellon, R. S. Averback, Acta Mater., 2009, 57, 3012-3019.

    Article  CAS  Google Scholar 

  9. F. Delogu, Phys. Rev. B, 2010, 82, 205415.

    Article  Google Scholar 

  10. Y. Ashkenazy, N. Q. Vo, D. Schwen, R. S. Averback, P. Bellon, Acta Mater., 2012, 60, 984-993.

    Article  CAS  Google Scholar 

  11. F. Delogu, Chem. Phys. Lett.2012, 521, 125-129.

    Article  CAS  Google Scholar 

  12. C. Suryanarayana, Prog. Mater. Sci., 2001, 46, 1-184.

    Article  CAS  Google Scholar 

  13. L. Takacs, Prog. Mater. Sci., 2002, 47, 355-414.

    Article  CAS  Google Scholar 

  14. A.G. Merzhanov, I.P. Borovinskaya, Comb. Sci. and Tech. A, 1975, 10, 195-201.

    Article  CAS  Google Scholar 

  15. Z.A. Munir, U. Anselmi-Tamburini, Mater. Sci. Eng. Reports, 1989, 3, 279-365.

    Article  Google Scholar 

  16. J.J. Moore, H.J. Feng, Prog. Mater. Sci., 1995, 39, 243-273.

    Article  CAS  Google Scholar 

  17. J.J. Moore, H.J. Feng, Prog. Mater. Sci., 1995, 39, 275-316.

    Article  CAS  Google Scholar 

  18. Chr. G. Tschakarov, G.G. Gospodinov, Z. Bontschev, J. Solid State Chem., 1982, 41, 244-252.

    Article  Google Scholar 

  19. V. Rusanov, Chr. Chakurov, J. Solid State Chem., 1989, 79, 181–88.

  20. G. B. Schaffer, P.G. McCormick, Metall. Trans. A, 1991, 22, 3019-3024.

    Article  Google Scholar 

  21. L. Takacs, M. A. Susol, Mater. Sci. Forum, 1996, 225-227, 559-563.

    Article  Google Scholar 

  22. G. B. Schaffer, J. S. Forrester, J. Mater. Sci., 1997, 32, 3157-3162.

    Article  CAS  Google Scholar 

  23. L. Takacs, Mater. Sci. Forum, 1998, 269-272, 513-522.

    Article  Google Scholar 

  24. C. Gras, E. Gaffet, F. Bernard, J.C. Niepce, Mater. Sci. Eng. A, 1999, 264, 94-107.

    Article  Google Scholar 

  25. C. Deidda, F. Delogu, F. Maglia, U. Anselmi-Tamburini, G. Cocco, Mater. Sci. Eng. A, 2004, 375-377, 800-803.

    Article  Google Scholar 

  26. C. Deidda, F. Delogu, G. Cocco, J. Metast. Nanocryst. Mater., 2004, 20-21, 337-341.

    Google Scholar 

  27. B. H. Lohse, A. Calka, D. Wexler, J. Appl. Phys., 2005, 97, 114912.

    Article  Google Scholar 

  28. F. Delogu, Scripta Mater., 2013, 69, 223-226.

    Article  CAS  Google Scholar 

  29. F. Delogu, L. Takacs, Acta Mater., 2014, 80, 435-444.

    Article  CAS  Google Scholar 

  30. A. Bakhshai, V. Soika, M. A. Susol, L. Takacs, J. Solid State Chem., 2000, 153, 371-380.

    Article  CAS  Google Scholar 

  31. E. A. Brandes, G. B. Brook (eds.), Smithells Metals Reference Handbook, 7th edition, Butterworth-Heinemann, Oxford, 1992.

    Google Scholar 

  32. F. Delogu, L. Schiffini, G. Cocco, Phil. Mag. A, 2001, 81, 1917-1937.

    Article  CAS  Google Scholar 

  33. F. Delogu, G. Mulas, L. Schiffini, G. Cocco, Mater. Sci. Eng. A, 2004, 382, 280-287.

    Article  Google Scholar 

  34. A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.

    Google Scholar 

  35. B. Leroy, Am. J. Phys., 1985, 53, 346-349.

    Article  Google Scholar 

  36. G. Manai, F. Delogu, L. Schiffini, G. Cocco, J. Mater. Sci., 2004, 39, 5319-5324.

    Article  CAS  Google Scholar 

  37. F. Delogu, L. Takacs, J. Mater. Sci., 2018, 53, 13331-13342.

    Article  CAS  Google Scholar 

  38. F. Gomollon-Bel, Chem. Int., 2019, 49, 12-17.

    Article  Google Scholar 

  39. V. Sepelak, A. Düvel, M. Wilkening, K.-D. Becker, P. Heitjans, Chem. Soc. Rev., 2013, 42, 7507-7520.

    Article  CAS  Google Scholar 

  40. S. L. James et al., Chem. Soc. Rev., 2012, 41, 413-447.

    Article  CAS  Google Scholar 

  41. T. Friščić, Chem. Soc. Rev., 2012, 41, 3493-3510.

    Article  Google Scholar 

  42. E. Boldyreva, Chem. Soc. Rev., 2013, 42, 7719-7738.

    Article  CAS  Google Scholar 

  43. D. Tan, F. García, Chem. Soc. Rev., 2019, 48, 2274-2292.

    Article  CAS  Google Scholar 

  44. T. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. Int. Ed., 2020, 59, 1018-1029.

    Article  Google Scholar 

  45. J. G. Hernández et al., Eur. J. Org. Chem., 2020, 1, 8-9.

    Article  Google Scholar 

  46. C. Suryanarayana, Research, 2019, 2019, 4219812.

    Article  CAS  Google Scholar 

  47. M. Carta, E. Colacino, F. Delogu, A. Porcheddu, Phys. Chem. Chem. Phys., 2020, 22, 14489-14502.

    Article  CAS  Google Scholar 

  48. F. Kh. Urakaev, V. V. Boldyrev, Powder Technol., 2000, 107, 93-107.

    Article  CAS  Google Scholar 

  49. F. Kh. Urakaev, V. V. Boldyrev, Powder Technol., 2000, 107, 197-206.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof. Laszlo Takacs, Department of Physics, University of Maryland Baltimore County, Baltimore (MD), USA, for support and discussions. This work is dedicated to his memory. F.T. has carried out his activity within the framework of the International Ph.D. in Innovation Sciences and Technologies at the University of Cagliari, Italy.

Funding

This work has been performed within the frame of the EU Horizon2020 FET OPEN project ICARUS funded by EU under Grant Agreement No. 713514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Delogu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 7, 2020; accepted December 16, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torre, F., Carta, M., Barra, P. et al. Mechanochemical Ignition of Self-propagating Reactions in Zn-S Powder Mixtures. Metall Mater Trans B 52, 830–839 (2021). https://doi.org/10.1007/s11663-021-02056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02056-2

Navigation