Skip to main content
Log in

Calculating the Susceptibility of Carbon Steels to Solidification Cracking During Welding

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Existing experimental results of weldability tests show the susceptibility of carbon steels to solidification cracking varies significantly with the C content. To analyze the effect of the C content on the susceptibility, equilibrium solidification of binary Fe-C alloys was assumed as an approximation in view of the rapid diffusion of the interstitial solute C in Fe. First, the curve of the equilibrium freezing temperature range vs. the C content was plotted and compared with the experimental results, but the agreement was not good. Then, the susceptibility index, i.e., |dT/d(fS)1/2| near (fS)1/2 = 1 (T: temperature; fS: fraction solid) recently proposed for Al alloys was tried. The curve of the susceptibility index vs. the C content was calculated. The curve agreed well with the experimental results of crack susceptibility tests of carbon steels in welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Kou: Welding Metallurgy, 3rd edition. John Wiley and Sons, Inc., Hoboken, NJ, 2020, pp. 323-377.

    Google Scholar 

  2. W. F. Savage and C. D. Lundin: Weld. J., 1965, vol. 44, pp. 433s-42s.

    Google Scholar 

  3. T. Soysal and S. Kou: Weld. J., 2017, vol. 96, pp. 389s-401s.

    Google Scholar 

  4. T. Soysal and S. Kou: Acta Mater., 2018, vol. 143, pp. 181-97.

    Article  CAS  Google Scholar 

  5. T. Soysal and S. Kou: J. Mater. Proc. Tech., 2019, vol. 266, pp. 421-8.

    Article  CAS  Google Scholar 

  6. K. Liu and S. Kou: Sci. Technol. Weld. Joining, 2020, vol. 25, pp. 251-7.

    Article  CAS  Google Scholar 

  7. K. Liu, P. Yu, and S. Kou, Weld. J. 99, 255s–70s (2020)

    Article  Google Scholar 

  8. Xia C, Kou S (2020) Sci Technol Weld Join. https://doi.org/10.1080/13621718.2020.1802897

    Article  Google Scholar 

  9. Xia C, Kou S (2020) Sci Technol Weld Join. https://doi.org/10.1080/13621718.2020.1812211

    Article  Google Scholar 

  10. S. Kou: Acta Mater., 2015, vol. 88, pp. 366-74.

    Article  CAS  Google Scholar 

  11. S. Kou: Weld. J., 2015, vol. 94, pp. 374s-88s.

    Google Scholar 

  12. T. Soysal and S. Kou: Sci. Technol. Weld. Joining, 2019, vol. 24, pp. 559-65.

    Article  CAS  Google Scholar 

  13. J. Liu and S. Kou: Acta Mater., 2017, vol. 125, pp. 513-23.

    Article  CAS  Google Scholar 

  14. J. Liu, H. P. Duarte and S. Kou: Acta Mater., 2017, vol. 122, pp. 47-59.

    Article  Google Scholar 

  15. J. Liu and S. Kou: Acta Mater., 2016, vol. 110, pp. 84-94.

    Article  CAS  Google Scholar 

  16. J. Liu and S. Kou: Acta Mater., 2015, vol. 100, pp. 359-68.

    Article  CAS  Google Scholar 

  17. AlcoTec Wire Corporation: Aluminum Filler Alloy Chart, AlcoTec Wire Corporation, Traverse, 2020. http://www.alcotec.com/us/en/support/upload/Aluminum_Filler_Alloy_Selection_Chart.pdf. Accessed 6 Aug 2020.

  18. Maxal International, Inc.: Maxal Guide for Aluminum Welding, Maxal International, Inc., Traverse, 2012. http://Maxal.com. Accessed 1 Aug 2012.

  19. N. Coniglio and C.E. Cross: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2718-28.

    Article  CAS  Google Scholar 

  20. J. Campbell: Castings, 2nd ed. Butterworth Heinemann, Oxford, UK, 2003, pp. 242-58.

    Google Scholar 

  21. J. Campbell: Private Communications, University of Birmingham, 2014.

  22. S. Kou: Transport Phenomena and Materials Processing, John Wiley and Sons, Inc., Hoboken, NJ, 1996, pp. 64-67.

    Google Scholar 

  23. D.J. Fisher and W. Kurz: Unpublished Research, Department of Materials, EPFL-Swiss Institute of Technology, Lausanne, 1978.

  24. L. Wang, N. Wang and N. Provatas: Acta Mater., 2017, vol. 126, pp. 302-12.

    Article  CAS  Google Scholar 

  25. J. Han, J. Wang, M. Zhang and K. Niu: Mater., 2019, vol. 5, pp. 100203.

    Google Scholar 

  26. J. Guo and G. Wen: Metals, 2019, vol. 9, pp. 836.

    Article  CAS  Google Scholar 

  27. P. Rong, N. Wang, L. Wang, R. Yang and W. Yao: J. Alloy Compd, 2016, vol. 676, pp. 181-6.

    Article  CAS  Google Scholar 

  28. Computherm LLC: Pandat—Phase Diagram Calculation Software Package for Multicomponent Systems, Computherm LLC, Madison, 2020. https://www.computherm.com/. Accessed 1 May 2020.

  29. Computherm LLC: PanIron—Thermodynamic Database for Commercial Iron Alloys, Computherm LLC, Madison, 2020. https://computherm.com/. Accessed 1 May 2020.

  30. V. Shankar and J. H. Devletian: Sci. Technol. Weld. Joining, 2005, vol. 10, pp. 236-43.

    Article  CAS  Google Scholar 

  31. T. Senda, F. Matsuda, G. Takano, K. Watanabe, T. Kobayashi and T. Matsuzaka: Trans. Jpn. Weld. Soc. 1971, vol. 2, pp. 141-62.

    Google Scholar 

  32. F. Matsuda, H. Nakagawa, K. Nakata, H. Kohmoto, and Y. Honda: Transactions of JWRI, 1983, vol. 12, pp. 65-72.

    Google Scholar 

  33. S. Ohshita, N. Yurioka, N. Mori and T. Kimura: Weld. J., 1983, vol. 62, pp. 129s-36s.

    Google Scholar 

  34. Amaya T, Yonezawa T, Ogawa K, Peltonen MJ, Hanninen H (2018) Weld J 97:55s-64s

    Article  Google Scholar 

  35. Smith RB (1993) ASM Handbook: Welding, Brazing and Soldering, vol 6. ASM International, Materials Park, OH, pp 641–61

    Google Scholar 

  36. G. Poltarak, S. Ferro and C. Cicutti: Steel Res. Int., 2017, vol. 88, pp. 1600223.

    Article  Google Scholar 

  37. Y. Won, T. Yeo, D. Seol and K. Oh: Metall Mater. Trans. B, 2000, vol. 31B, pp. 779-94.

    Article  CAS  Google Scholar 

  38. G. Azizi, B. Thomas and M. Zaeem: Metall Mater. Trans. B, 2020, vol. 51B, pp. 1875-903.

    Article  Google Scholar 

  39. M. Wolf and W. Kurz: Metall Trans. B, 1981, vol. 12B, pp. 85-93.

    Article  CAS  Google Scholar 

  40. K. Harste and K. Schwerdtfeger: ISIJ Int., 2003, vol. 43, pp. 1011–20.

    Article  CAS  Google Scholar 

  41. T. Soysal and S. Kou: Sci. Technol. Weld. Joining, 2020, vol. 25, pp. 415-21.

    Article  CAS  Google Scholar 

  42. N. Bakir, A. Gumenyuk and M. Rethmeier: Sci. Technol. Weld. Joining, 2018, vol. 23, pp. 234-40.

    Article  CAS  Google Scholar 

  43. Wolf MM (1997) In: Wolf MM (ed) Continuous Casting: Initial Solidification Strand Surface Quality of Peritectic Steels, vol 9. Iron and Steel Society/AIME, Warrendale, PA, pp 61–65

    Google Scholar 

Download references

Acknowledgments

Chunzhi Xia was supported by the Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle-aged Teachers and Presidents as a Visiting Professor at the University of Wisconsin-Madison from 2018 to 2019. Sindo Kou was supported by the National Science Foundation initially under Grant No. DMR 1500367 and subsequently under Grant No. DMR1904503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindo Kou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 17, 2020, Accepted October 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Kou, S. Calculating the Susceptibility of Carbon Steels to Solidification Cracking During Welding. Metall Mater Trans B 52, 460–469 (2021). https://doi.org/10.1007/s11663-020-02021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02021-5

Navigation