Skip to main content

Advertisement

Log in

3D Numerical Simulation of the Var Consumable Electrode Melting Process

  • Topical Collection: Liquid Metal Processing & Casting Conference 2019
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A 3D numerical model was set up to simulate the formation and dynamics of the liquid metal film under the consumable electrode during VAR process. In the present paper, the implementation of this model is described. It was developed using the open source computational fluid dynamics (CFD) software OpenFOAM. The model solves coupled momentum and energy equations combined with a volume of fluid (VOF) method to track the liquid metal free surface. The melting of the electrode material is modeled with an enthalpy-porosity approach. The electric power supplied by the arc is supposed to be uniformly distributed over the surface of the electrode tip. For a given electric arc power, the model enables to quantitatively predict the dripping rate and hence the overall melt rate. Besides the thermal behavior of the electrode, simulation results illustrate the dynamics of the liquid film and the transfer mechanisms of the liquid metal during VAR melts performed with short and long interelectrode gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

α m :

Metal volume fraction (–)

β :

Dilatation coefficient (K−1)

γ :

Solid volume fraction (–)

ε :

Turbulent kinetic energy dissipation rate (m2 s−3)

λ 2 :

Secondary dendrite arm spacing (m)

µ :

Dynamic viscosity (Pa s−1)

µ t :

Turbulent dynamic viscosity (Pa s−1)

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

σ ST :

Stefan Boltzmann constant (W m−2 K−4)

Cp:

Specific heat (J K−1 kg−1)

f σ :

Volumetric surface tension force (N m−3)

h :

Total enthalpy (J m−3)

k :

Turbulent kinetic energy (m2 s−2)

k c :

Curvature (m−1)

k :

Thermal conductivity (W m−1 K−1)

k t :

Turbulent thermal conductivity (W m−1 K−1)

L :

Latent heat of melting (J kg−1)

P arc :

Power delivered by the arc to the electrode

P rad :

Power radiated from the electrode lateral wall

P :

Pressure

T :

Temperature (K)

T sol :

Solidus temperature (K)

T liq :

Liquidus temperature (K)

U :

Velocity vector (m s−1)

m:

Metal

VOF:

Volume of fluid

CSF:

Continuum surface force

CFL:

Courant–Friedrich–Lewy

MULES:

Multidimensional universal limiter with explicit solution

References

  1. K.-O. Yu: Modeling for Casting and Solidification Processing, CRC Press, Boca Raton, 2001.

    Book  Google Scholar 

  2. K.O. Yu and J. Domingue: Superalloy 718: Metallurgy and Applications, 1989, pp. 33–48.

  3. F.J. Zanner, L.A. Bertram, C. Adasczik, and T. O’Brien: Metallurgical Transactions B, 1984, vol. 15, pp. 117–125.

    Article  Google Scholar 

  4. R.L. Williamson, F.J. Zanner, and S.M. Grose: Metallurgical and Materials Transactions B, 1997, vol. 28, pp. 841–853.

    Article  CAS  Google Scholar 

  5. F.J. Zanner: Metallurgical Transactions B, 1979, vol. 10, pp. 133–142.

    Article  Google Scholar 

  6. P. Chapelle, C. Noël, A. Risacher, J. Jourdan, A. Jardy, and J. Julien: in IOP Conference Series: Materials Science and Engineering, vol. 143, IOP Publishing, 2016, p. 012011.

  7. A. Jardy and D. Ablitzer: Xiyou Jinshu Cailiao yu Gongcheng(Rare Metal Materials and Engineering), 2006, vol. 35, pp. 119–22.

  8. K.M. Kelkar, S.V. Patankar, A. Mitchell, O. Kanou, N. Fukada, and K. Suzuki: in 11th World Conference on Titanium (Ti-2007), Kyoto, Japan, June, 2007, pp. 3–7.

  9. K. Pericleous, G. Djambazov, M. Ward, L. Yuan, and P.D. Lee: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 5365–5376.

    Article  CAS  Google Scholar 

  10. L.A. Bertram and F.J. Zanner: Electrode Tip Melting Simulation during Vacuum Arc Remelting of Inconel 718, Sandia National Labs., Albuquerque, NM (USA), 1986.

    Google Scholar 

  11. A. Jardy, L. Falk, and D. Ablitzer: Ironmaking & steelmaking, 1992, vol. 19, pp. 226–232.

    CAS  Google Scholar 

  12. H.E. Mir, A. Jardy, J.-P. Bellot, P. Chapelle, D. Lasalmonie, and J. Senevat: Journal of Materials Processing Technology, 2010, vol. 210, pp. 564–72.

    Article  Google Scholar 

  13. A. Jardy, P. Chapelle, A. Malik, J.-P. Bellot, H. Combeau, and B. Dussoubs: ISIJ international, 2013, vol. 53, pp. 213–220.

    Article  CAS  Google Scholar 

  14. V.R. Voller and C. Prakash: International Journal of Heat and Mass Transfer, 1987, vol. 30, pp. 1709–1719.

    Article  CAS  Google Scholar 

  15. C.W. Hirt and B.D. Nichols: Journal of computational physics, 1981, vol. 39, pp. 201–225.

    Article  Google Scholar 

  16. R.M. Ward, B. Daniel, and R.J. Siddall: in Proc. Int. Symp. Liq. Met Proc. Cas, 2005.

  17. P.-O. Delzant, P. Chapelle, A. Jardy, J. Jourdan, and Y. Millet: Journal of Materials Processing Technology, 2019, vol. 266, pp. 10–18.

    Article  CAS  Google Scholar 

  18. H. Rusche: PhD thesis, 2002.

  19. 19 T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu: Computers & Fluids, 1995, vol. 24, pp. 227–238.

    Article  Google Scholar 

  20. 20 J.U. Brackbill, D.B. Kothe, and C. Zemach: Journal of computational physics, 1992, vol. 100, pp. 335–354.

    Article  CAS  Google Scholar 

  21. O. Ubbink: PhD thesis, University of London, 1997.

  22. D.J. Harvie, M.R. Davidson, and M. Rudman: ANZIAM Journal, 2005, vol. 46, pp. 133–149.

    Article  Google Scholar 

  23. Z.S. Saldi: PhD Thesis, Delft University of Technology, 2012.

  24. Y. Kim, A. Hossain, and Y. Nakamura: International Journal of Heat and Mass Transfer, 2013, vol. 63, pp. 101-112.

    Article  CAS  Google Scholar 

  25. 23 A.D. Brent, V.R. Voller, and K.T.J. Reid: Numerical Heat Transfer, Part A Applications, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  26. R.I. Issa: Journal of computational physics, 1986, vol. 62, pp. 40–65.

    Article  Google Scholar 

  27. S. Patankar: Numerical Heat Transfer and Fluid Flow, CRC press, Boca Raton 1980.

    Google Scholar 

  28. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, 2002.

    Book  Google Scholar 

  29. V. Descotes: PhD Thesis, Université de Lorraine, 2014.

  30. A. Mitchell: ISIJ international, 1992, vol. 32, pp. 557–562.

    Article  CAS  Google Scholar 

  31. F.J. Zanner, R.L. Williamson, R.P. Harrison, H.D. Flanders, R.D. Thompson, and W.C. Szeto: Superalloy, 1989, vol. 718, pp. 1989–17.

    Google Scholar 

  32. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability, 1961.

  33. L. Limat, F. Giorgiutti, M. Fermigier, P. Jenffer, and J.-E. Wesfreid: Revue générale de thermique, 1997, vol. 36, pp. 672–681.

    Article  CAS  Google Scholar 

  34. J.-F. Wadier, Y. Honnorat, and J. Morlet: Influence de La Refusion d’électrodes Consommables Sur La Propreté Inclusionnaire, 1977.

  35. A.L. Andreev, N.F. Anoshkin, and G.A. Bochvar: Titanium Alloys. Melting and Casting of Titanium Alloys, Moscow: Metallurgiya, 1978.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Y. Millet and J. Jourdan from TIMET Savoie, France, who have supported the acquisition of the experimental data shown in Figure 5 of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chapelle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 20, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhar, R., Jardy, A., Chapelle, P. et al. 3D Numerical Simulation of the Var Consumable Electrode Melting Process. Metall Mater Trans B 51, 2492–2503 (2020). https://doi.org/10.1007/s11663-020-01966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01966-x

Navigation