Skip to main content
Log in

Evolution Characteristics and Influence Mechanism of Binder Addition on Metallurgical Properties of Iron Carbon Agglomerates

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Utilization of iron carbon agglomerates (ICA) is considered to be an innovative technology to realize low carbon blast furnace (BF) ironmaking. The preparation of ICA with utilization of polyvinyl alcohol (PVA) and coal tar pitch (CTP) as binders was proposed in this study. The influence mechanisms of binder addition on the metallurgical properties of ICA were revealed. The results show that adding PVA is beneficial to improving the compressive strength of briquettes due to the chemical adsorption between the binder and the material particles. However, with the increase of PVA addition ratio from 0 to 1.0 pct, the compressive strength of ICA decreases from 2854 N to 2601 N. Meanwhile, the addition of PVA has no effect on the carbon crystallites structure of ICA and the reactivity of ICA present few changes, which are all at about 60 pct with the increase of PVA addition ratio from 0 to 1.0 pct. In addition, as the addition of CTP increases from 0 to 7 pct, the microstructure of ICA becomes dense and less porous, which can improve the compressive strength of ICA from 1639 to 3168 N. Although the reactivity of ICA is slightly reduced from 65.6 to 58.1 pct due to the development of carbon crystallites structure, it is still much higher than that of conventional metallurgical coke (30 to 35 pct). Meanwhile, the post-reaction strength is improved from 11.9 to 19.6 pct. However, as the addition amount of CTP exceeds 7 pct, the beneficial effects of CTP addition are attenuated. CTP is more suitable to be the binder of ICA, and the appropriate ratio of CTP is 7 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Zhang, Z. Wei, J. Ma, Z. Qiu, T. Du: Appl. Therm. Eng., 2019, 10.1016/j.applthermaleng.2019.04.04

    Article  Google Scholar 

  2. J. Zhao, H. Zuo, Y. Wang, J. Wang, Q. Xue: Ironmak. Steelmak., 2019, https://doi.org/10.1080/03019233.2019.1639029.

    Article  Google Scholar 

  3. H. Wang, M. Chu, W. Zhao, Z. Liu, J. Tang: Metall. Mater. Trans. B, 2019, vol.50, pp. 324-336.

    Article  CAS  Google Scholar 

  4. Z. Zhang, J. Meng, L. Guo, Z. Guo: Metall. Mater. Trans. B, 2016, vol.47, pp.467–484.

    Article  CAS  Google Scholar 

  5. W. Xu, W. Cao, T. Zhu, Y. Li, B. Wan: Steel Res. Int., 2015, vol 86, pp. 1063–1072.

    Article  CAS  Google Scholar 

  6. X. Liu, X. Han, H. Cheng, X. Yin, R. Guo, X. Zhao, Q. Wang: Metall. Res. Technol., 2018, vol. 115, pp. 421-430.

    Article  CAS  Google Scholar 

  7. M. Natio, A. Okamato, K. Yamaguchi, T. Yamaguchi, Y. Inoue: Tetsu-to-Hagané, 2001, vol. 87, pp. 357–364.

    Article  Google Scholar 

  8. M. Naito, A. Okamoto, K. Yamaguchi, T. Yamaguchi, Y. Inoue: Nippon Steel Tech. Rep., 2006, vol.94, pp.103–108.

    Google Scholar 

  9. S.Nomura, K. Higuchi, K.Kunitomo, M. Naito: ISIJ Int., 2010, vol. 50, pp.1388–1395.

    Article  CAS  Google Scholar 

  10. M. Naito, S. Nomura, K. Kato: Tetsu-to-Hagané, 2010, vol. 96, pp.201–208.

    Article  CAS  Google Scholar 

  11. A. Kasai, Y. Matsui: ISIJ Int., 2004, vol. 44, pp.2073–2078.

    Article  CAS  Google Scholar 

  12. H. Wang, M. Chu, W. Zhao, R. wang, Z. Liu, J. (2016) Tang: Ironmak. Steelmak, 43, 571-580.

    Article  CAS  Google Scholar 

  13. H. Wang, W. Zhao, M. Chu, Z. Liu, J. Tang, Z. Ying: Powder Technol., 2018, vol. 328, pp. 318-328.

    Article  CAS  Google Scholar 

  14. H. Wang, M. Chu, J. Bao, D. Han, L. Cao, W. Zhao: J. Iron Steel Res., 2019, vol. 31, pp.103-111.

    Google Scholar 

  15. T. Anyashiki, H. Fujimoto, T. Yamamoto, T. Sato, H. Matsuno, M. Sato, K. Takeda: Tetsu-to-Hagané, 2015, vol. 101, pp. 515–523.

    Article  Google Scholar 

  16. Y. Sekine, H. Fujimoto: ISIJ Int., 2019, vol. 59, pp.1437–1439.

    Article  CAS  Google Scholar 

  17. P. Venter, N. Naude: J. S. Afr. I. Min. Metall., 2015, vol.115, pp.329–333.

    Article  CAS  Google Scholar 

  18. Y.H. Song, W.J. He, Q.N. Ma, Y.H. Tian, X.Z. Lan: Int. J. Coal Prep. Util., 2020, vol.40, pp.376–388.

    Article  CAS  Google Scholar 

  19. S.J. Liu, Z.W. Chang, S. Yang, Q. Zhang, S.G. Ju, W.G. Du, R. Ma, Z. Wang, K.X. Zhang (2020) Asia-Pac J Chem Eng., DOI: 10.1002/apj.2414.

    Article  Google Scholar 

  20. Q. Zhong, Y. Yang, T. Jiang, Q. Li, B. Xu (2016) Fuel Process. Technol., 148, 12–18

    Article  CAS  Google Scholar 

  21. China GB/T 4000-2017: Determination of coke reactivity index (CRI) and coke strength after reaction (CSR).

  22. Y. Zhao, Y. Zhang, H. Zhang, Q. Wang, Y. Guo: J. Anal. Appl. Pyrol., 2015, vol. 112, pp. 290-297.

    Article  CAS  Google Scholar 

  23. C. Zou, Y. She, R. Shi: Fuel Process. Technol., 2019, vol. 190, pp. 1-12.

    Article  CAS  Google Scholar 

  24. K. Alexandrino, Á. Millera, R. Bilbao, M.U. Alzueta: Fuel Process. Technol., 2018, vol. 179, pp.369-377.

    Article  CAS  Google Scholar 

  25. L. Jin, X. Bai, Y. Li, C. Dong, H. Hu, X. Li: Fuel Process. Technol., 2016, vol. 147, pp. 41-46.

    Article  CAS  Google Scholar 

  26. M. Pawlyta, J. Rouzaud, S. Duber: ScienceDirect., 2015, vol. 84, pp. 479-490.

    CAS  Google Scholar 

  27. R. Morga, I. Jelonek, K. Kruszewska: Int. J. Coal Geol., 2014, vol. 134-135, pp.17-23.

    Article  Google Scholar 

  28. R.Morga, I. Jelonek, K. Kruszewska, W. Szulik: Int. J. Coal Geol., 2015, vol.144-145, pp.130-137.

    Article  Google Scholar 

  29. Z. Gai, R. Zhang, J. Bi: Energy & Fuels, 2017, vol. 31, pp. 3759-3767.

    Article  CAS  Google Scholar 

  30. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Poschl (2005) Carbon, 43, 1731-1742.

    Article  CAS  Google Scholar 

  31. Y. Zhu, X. Zhao, J. Cheng, J. Lu, S. Lai: Spectrosc. Spect. Anal., 2017, vol. 37, pp.1919-1924.

    CAS  Google Scholar 

  32. B. Bai, Q. Guo, Y. Li, X. Hu, J. Ma: Energy & Fuels, 2018, vol. 32, pp. 3356-3367.

    Article  CAS  Google Scholar 

  33. S. Moraes, J. De Lima, J. Neto, C. Fredericci, E. Saccoccio: Min. Proc. Ext. Met. Rev., 2019, https://doi.org/10.1080/08827508.2019.1604521.

    Article  Google Scholar 

  34. K. Zhang, Y. He, Z. Wang, T. Huang, Q. Li, S. Kumar, K. Cen: Fuel, 2017, vol. 210, pp.738-747.

    Article  CAS  Google Scholar 

  35. F. Meng, J. Yu, A. Tahmasebi, Y. Han, H. Zhao, J. Lucas, T. Wall: Energy & Fuels, 2014, vol. 28, pp. 275-284.

    Article  CAS  Google Scholar 

  36. S. Patra, A. Pattanaik, V. Rayasam: Can. Metall. Quart., 2019, vol.58, pp. 28-45.

    Article  CAS  Google Scholar 

  37. J. Cai, S. Yang, X. Hu, W. Song, Q. Xu, B. Zhou, Y. Song: Fuel, 2019, vol. 253, pp.339-348.

    Article  CAS  Google Scholar 

  38. Z. Shi, L. Jin, Y. Zhou, Y. Li, H. Hu: Fuel Process. Technol., 2017, vol.167, pp.648-654.

    Article  CAS  Google Scholar 

  39. S. Qiu, S. Zhang, Y. Wu, G. Qiu, C. Sun, Q. Zhang, J. Dang, L. Wen, M. Hu, J. Xu, R. Zhu, C. Bai: Fuel, 2018, vol. 232, pp. 374–383.

    Article  CAS  Google Scholar 

  40. K. NaveenKumar, R.Padma, L.Vijayalakshmi, J. MariaNithya (2017) J. Lumin., 182, 208-219.

    Article  Google Scholar 

  41. Sushil Gupta, Veena Sahajwalla, Jonathan Burgo, Pinakin Chaubal, Ted Youmans: Metall. Mater. Trans. B, 2005, vol.36, pp.385-394.

    Article  Google Scholar 

  42. S. Sun, L.Wang, C. Wang, Y. Zhang: Vacuum., 2018, vol.158, pp. 215-217.

    Article  CAS  Google Scholar 

  43. Y. Feng, Y. Wang, G. Liu, J. Shen, R. Li, J. Du, Z.Yang, Q. Xu: J. Clean. Prod., 2018, vol.172, pp. 2544-2552.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China-Liaoning Joint Funds (U1808212), the Fundamental Research Funds of the Central Universities of China (N182504010) and Xingliao Talent Plan (XLYC1902118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansheng Chu or Hongtao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 24, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Chu, M., Wang, H. et al. Evolution Characteristics and Influence Mechanism of Binder Addition on Metallurgical Properties of Iron Carbon Agglomerates. Metall Mater Trans B 51, 2785–2796 (2020). https://doi.org/10.1007/s11663-020-01962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01962-1

Navigation