Skip to main content
Log in

Effects of Reducing Parameters on the Size of Ferronickel Particles in the Reduced Laterite Nickel Ores

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Crude ferronickel alloy can be produced by the carbothermal reduction of laterite ore-coal composite. The size of ferronickel particles in semi-molten state is crucial for the subsequent magnetic separation between the ferronickel and slag. Aimed to better understand the effects of reducing parameters on the size of ferronickel particles in the reduced laterite nickel ores, a series of carbothermal reduction experiments of laterite ore-coal composite in tall pellets bed was carried out. The experimental results indicated that, higher reducing temperature, longer reducing time and more CaO additive were beneficial for the aggregation and growth of ferronickel particles. Temperature (1400 °C) is the most important parameter. Less CaO additive needs longer reducing time, more CaO additive needs shorter reducing time. Excessive CaO amount (CaO = 10 pct) may prevent ferronickel particles from aggregation and growth due to its rapid melting. The importance ranking of these parameters should be temperature > time > CaO additive. The optimum reduction parameters were “1400 °C, 45 minutes, CaO = 0 pct” and “1400 °C, 30 minutes, CaO = 5 pct”. Under these conditions, all the ferronickel particles in 4 layers were clear and bigger. The percentages of + 50 μm of particles were about 65 and 59 pct respectively, and the recovery rates of Ni were about 88 and 85 pct. The findings from this work may provide guidelines for the improvement of ferronickel alloy production by laterite nickel ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1. K. Tozawa: Tetsu-to-Hagané, 1993, vol. 79, pp. 537-547.

    Article  CAS  Google Scholar 

  2. 2. M.J. Rao, G.H. Li, T. Jiang, J. Luo, Y.B. Zhang and X.H. Fan: JOM, 2013, vol. 65, pp. 1573-1583.

    Article  CAS  Google Scholar 

  3. 3. S. Mohanty, S.K. Roy and P.K. Sen: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 639-642.

    Article  CAS  Google Scholar 

  4. 4. Z.W. Peng and J.Y. Hwang: Int. Mater. Rev., 2015, vol. 60, pp. 30-63.

    Article  CAS  Google Scholar 

  5. 5. M.G. King: JOM, 2005, vol. 57, pp. 35-39.

    Article  CAS  Google Scholar 

  6. 6. M.Y. Solar and S. Mostaghel: Trans. Inst. Min. Metall. C, 2015, vol. 124, pp. 35-46.

    CAS  Google Scholar 

  7. 7. T. Watanabe, S. Ono, H. Arai and T. Matsumori: Int. J. Miner. Process, 1987, vol. 19, pp. 173-187.

    Article  CAS  Google Scholar 

  8. 8. A.E.M. Warner, C.M. Diaz, A.D. Dalvi, P.J. Mackey and A.V. Tarasov: JOM, 2006, vol. 58, pp. 11-20.

    Article  Google Scholar 

  9. 9. K. Ishii: Int. J. Miner. Process., 1987, vol. 19, pp. 15-24.

    Article  CAS  Google Scholar 

  10. 10. X.M. Li, Y. Li, X.Y. Zhang, Z.Y. Wen and X.D. Xing: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 925-936.

    Article  Google Scholar 

  11. 11. V.D.A. Oliveira, C.G.D. Santos and E.D.A. Brocchi: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1309-1321.

    Article  Google Scholar 

  12. 12. B. Li, Z.G. Ding, Y.G. Wei, H. Wang, Y.D. Yang and M. Barati: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3067-3073.

    Article  Google Scholar 

  13. 13. Y. Kobayashi, H. Todoroki and H. Tsuju: ISIJ Int., 2011, vol. 51, pp. 35-40.

    Article  CAS  Google Scholar 

  14. 14. G.J. Chen, W.S. Hwang, S.H. Liu and J.S. Shiau: Mater. Trans., 2015, vol. 56, pp. 550-555.

    Article  CAS  Google Scholar 

  15. 15. G.H. Li, J. Luo, Z.W. Peng, Y.B. Zhang, M.J. Rao and T. Jiang: ISIJ Int., 2015, vol. 55, pp. 1828-1833.

    Article  CAS  Google Scholar 

  16. 16. X.M. Lv, W. Lv, M. Liu, Z.X. You, X.W. Lv and C.G. Bai: ISIJ Int., 2018, vol. 58, pp. 799-807.

    Article  CAS  Google Scholar 

  17. 17. B. Li, Z.G. Ding, Y.G. Wei, S.W. Zhou and H. Wang: Mater. Trans., 2018, vol. 59, pp. 1180-1185.

    Article  CAS  Google Scholar 

  18. 18. S.W. Zhou, Y.G. Wei, B. Li, H. Wang, B.Z. Ma and C.Y. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 145-153.

    Article  Google Scholar 

  19. 19. H. Tsuji and N. Tachino: ISIJ Int., 2012, vol. 52, pp. 1951-1957.

    Article  CAS  Google Scholar 

  20. 20. H. Tsuji: ISIJ Int., 2012, vol. 52, pp. 1000-1009.

    Article  CAS  Google Scholar 

  21. 21. X. Jiang, S.H. Liu, T.Y. Huang, G.Q. Zhang, H. Guo, G.H. Shiau and F.M. Shen: ISIJ Int., 2016, vol. 56, pp. 88-93.

    Article  CAS  Google Scholar 

  22. M.X. Chen: Northeastern University, China, 2013, Master thesis, pp. 33–41 (in Chinese).

Download references

Acknowledgment

The financial supports of National Science Foundation of China (NSFC 51874080, NSFC 62001312 and NSFC 51974073) are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 29, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., He, L., Wang, L. et al. Effects of Reducing Parameters on the Size of Ferronickel Particles in the Reduced Laterite Nickel Ores. Metall Mater Trans B 51, 2653–2662 (2020). https://doi.org/10.1007/s11663-020-01961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01961-2

Navigation