Skip to main content
Log in

Microwave Carbothermic Reduction of Low-Grade Iron Ore

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study evaluates the carbothermal microwave reduction of low-grade banded hematite jasper iron ore for the preparation of potential feedstock for the alternative iron-making process. The coal sample act as transparent material to microwave irradiation at low temperature, however, above 600 °C, an exponential rise in temperature with a heating rate of ~ 220 °C/min was achieved. In contrast, charcoal showed an excellent response to microwaves at low temperatures. It was found that the iron-oxide reduction with coal is lean, resulting in lower metallization; however, the higher magnetite content in the concentrate improves the iron separation efficiency compared to charcoal. The separation efficiency of 67.3 pct is achieved at 6 pct C using coking coal compared to 44.9 pct with charcoal. It is inferred that the coal can be employed as a reductant for microwave carbothermal reduction. The ferrite balls with a yield of ~ 5 pct having 95 pct purity and iron-rich concentrate with ~ 87 emu/g magnetization and ~ 37 pct metallization with 73 pct yield are achieved with 18 pct charcoal in 15 minutes. The chemically bonded hematite and quartz phase enhances the electrical resistance and thus leading to efficient heating compared to the unbonded synthetic mixture. The fayalite formation creates localized melt zones that form’ hot-spots’ for microwaves and enhances the heating rate and, consequently, the reduction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1.K. Hara & M. Hayashi: J. Microw. Power Electromagn. Energy, 2011, 45, 137–147.

    Article  Google Scholar 

  2. 2.M, Hayashi, K. Takeda, K. Kashimura, T. Watanabe, & K. Nagata: ISIJ Int., 2013, 53, 1125–1130.

    Article  CAS  Google Scholar 

  3. 3.C.A. Pickles: Min. Eng., 2009, 22(13), 1112-1118.

    Article  CAS  Google Scholar 

  4. 4.J. Zhou, W. Xu, Z. You, Z. Wang, Y. Luo, L. Gao, C. Yin, R. Peng, & L. Lan: Scientific reports, 2016, 6, 25149.

    Article  CAS  Google Scholar 

  5. 5.J. Hunt, A. Ferrari, A. Lita, M. Crosswhite, B. Ashley, and A.E. Stiegman: J. Phys. Chem. C, 2013, 117, 26871–26880.

    Article  CAS  Google Scholar 

  6. M. Stir, K. Ishizaki, S. Vaucher, & R. Nicula: J. Appl. Phys., 2009, 105.

  7. 7.K. Kashimura, K. Nagata, & M. Sato: Mater. Trans., 2010, 51, 1847–1853.

    Article  CAS  Google Scholar 

  8. 8.N. Standish and W. Huang: ISIJ Int., 1991, 31(3), 241-245.

    Article  CAS  Google Scholar 

  9. 9.A. Amini, K. Ohno, and T. Maeda: Scientific Reports, 2019, 8, 15023. https://doi.org/10.1038/s41598-018-33460-5.

    Article  CAS  Google Scholar 

  10. 10.K.E. Waters, N.A. Rowson, R.W. Greenwood, A.J. Williams: Sep. Purif. Technol., 2007, 46, 9–17.

    Article  Google Scholar 

  11. 11.S.W. Kingman and N.A. Roason: J Microwave Electromagnetic Energy, 2000, 35, 144-150.

    CAS  Google Scholar 

  12. S.J. Koleini and K. Barani: InTech, 2012, 79–104.

  13. 13.V.Rayapudi, S. Agrawal, and N. Dhawan: Min. Eng., 2019, 132, 202-210.

    Article  Google Scholar 

  14. 14.V. Rayapudi, S. Agrawal, and N. Dhawan: Pow. Technol., 2020, 362, 826-834.

    Article  CAS  Google Scholar 

  15. 15.A. Amini, K. Ohno, T. Maeda, & K. Kunitomo: Powder Technol., 2018, 338, 101–109.

    Article  CAS  Google Scholar 

  16. 16.H. Han, D. Duan, P. Yuan, & S. Chen: Ironmaking & Steelmaking, 2015, 42(7), 542-547.

    Article  CAS  Google Scholar 

  17. B.A. Wills & J. Finch: (2015). Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-Heinemann.

  18. 18.K. Barani, S.J. Koleini, & B. Rezaei: Separation and Purification Technology, 2011, 76(3), 331-336.

    Article  CAS  Google Scholar 

  19. 19.A.W. Coats, & J.P. Redfern: Nature, 1964, 201(4914), 68-69.

    Article  CAS  Google Scholar 

  20. 20.O. Williams, A. Ure, L. Stevens, E. Binner, C. Dodds, S. Kingman, B. Das, P.S. Dash, and E. Lester: Energy & Fuel, 2019, 33(7), 6817-6828.

    Article  CAS  Google Scholar 

  21. 21.E. Binner, M. Mediero-Munoyerro, T. Huddle, S. Kingman, C. Dodds, G. Dimitrakis, J. Robinson, and E. Lester: Fuel Process. Technol., 2014, 125, 8−17.

    Article  CAS  Google Scholar 

  22. 22.E. Lester, S. Kingman, C. Dodds, and J. Patrick: Fuel, 2006, 85, 2057− 2063.

    Article  CAS  Google Scholar 

  23. 23.S. Mishra and G.G. Roy: Metall. Mater. Trans., 2016, 47(4), 2347-2356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding agency Science Engineering Research Board, New Delhi, India, for providing early-career research funds via ECR-000874/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 28, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, S., Dhawan, N. Microwave Carbothermic Reduction of Low-Grade Iron Ore. Metall Mater Trans B 51, 1576–1586 (2020). https://doi.org/10.1007/s11663-020-01883-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01883-z

Navigation