Skip to main content
Log in

Slag Pool Depth Effectiveness of Molten Mold Flux Feeding Technology

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

POSCO’s advanced CASting Technology (PoCAST) is an innovative molten mold flux feeding technology which has been developed to ensure quality of continuously-cast Twinning-Induced Plasticity (TWIP) steel and Ultra-low carbon steels (ULCSs). Stable qualities of ULCS slabs could be achieved by reducing mold flux entrapments by optimizing the range of slag pool depth; this result matches well with entrapment characteristics during 0.6 scale water model tests. Also, uniform solidification at the meniscus with shallower depth of oscillation mark and subsurface hook depth was performed in optimum range of slag pool depth. Thermal plasma melting furnace feeding facility has been developed to control the slag pool depth in the mold by increasing the melting rate. The proposed optimized range of slag pool depth was verified in a commercial trial by realizing thickness control of slag pool depth during ULCS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.K. Park, J.W. Cho, K.H. Moon, S.H. Lee, K.H. Kim, and H.S. Jeong: Proc. 7th Intl. Conf. Clean Steel, Balatonfured, Hungary, 2007, p. 264.

  2. S.K. Kim, J. Choi, S.C. Kang, I.R. Shon, and K.G. Chin: POSCO Technical Report, 2006, vol. 10, pp. 106–14.

  3. M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee: Metall. Mater. Trans. B, 2013, vol.44, pp. 299-308.

    Article  Google Scholar 

  4. J.W. Cho, S. Yoo, M.S. Park, J.K. Park, K.H. Moon: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 187–96.

    Article  Google Scholar 

  5. C.-B. Shi, M.-D. Seo, J.-W. Cho, and S.-H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.

    Article  Google Scholar 

  6. B. Lu, K. Chen, W. Wang, and B. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1496–509.

    Article  Google Scholar 

  7. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 1–8.

    Article  CAS  Google Scholar 

  8. S. Terada, S. Kaneko, T. Ishikawa, and Y. Yoshida: I&SM, 1991, pp. 41–44.

  9. C. Lefebvre, J.P. Radot, J.N. Pontoire, and Y. Roux: La Revue de Metallurgie-CIT, 1997, pp. 489–96.

  10. P. Valentin, C. Bruch, K. Harste, H. Lachmund, M. Hecht, and J. Potschke: Steel Research, 2003, vol. 74, pp. 139–46.

    Article  CAS  Google Scholar 

  11. M. S. Park and S. Yoo: 10th International Conference on Molten Slags, Fluxes and Salts, 2016, pp. 343–47.

  12. Y. Huang, S.F. Ye, T.S. Su, and M.M. Li: Jiangxi Metall., 1999, vol. 19, pp. 1.

    CAS  Google Scholar 

  13. Q. Wang, S.P. He, Y.M. He, W.M. Chen, and J.C. Li: Iron Steel, 2007, vol. 42, pp. 32.

    CAS  Google Scholar 

  14. H.X. Li, Q. Wang, H. Lei, J.W. Jiang, Z.C. Guo, and J.C. He: ISIJ Int., 2014, vol. 54, pp. 1592-600.

    Article  CAS  Google Scholar 

  15. P. Hammerschmid, K. A. Tacke, H. Popper, L. Weber, and K. Schwerdtfeger: Ironmaking Steelmaking, 1984, vol. 11, pp. 322.

    Google Scholar 

  16. G. Wang, M. Tun, C. Zhang, and G. Xiao: ISIJ Int., 2015, vol. 55, pp. 984-92.

    Article  CAS  Google Scholar 

  17. S. Singh and S. C. Koria: ISIJ Int., 1993, vol. 33, 1228.

    Article  CAS  Google Scholar 

  18. J. Herbertson, Q.L. He, P.J. Flint, and R.B. Mahapatra: Steel-Making Conference Proceedings, ISS, Warrendale, P.A., 1991, pp. 171–85.

  19. T. Honeyands and J. Herbertson: Steel Res. Int., 1995, vol. 66, pp. 287-93.

    Article  CAS  Google Scholar 

  20. M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685-91.

    Article  CAS  Google Scholar 

  21. Y. Awajiya, J. Kubota, and S. Takeuchi: AISTech, 2005, vol.2, pp. 65-73.

    CAS  Google Scholar 

  22. M. Iguchi, Y. Sumida, R. Okada, and Z.I. Moritai: ISIJ Int., 1994, vol. 34, pp. 164-70.

    Article  CAS  Google Scholar 

  23. T. Watanabe and M. Iguchi: ISIJ Int., 2009, vol. 49, pp. 182-88.

    Article  CAS  Google Scholar 

  24. Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Iron Steel Res. J., 2014, 21, pp. 1081-19.

    Article  Google Scholar 

  25. Q. He: ISIJ Int., 1993, vol. 33, pp. 343-345.

    Article  CAS  Google Scholar 

  26. S.M. Cho, S.H. Kim, R. Chaudhary, B.G. Thomas, H.J. Shin, Y. Choi, and S.K. Kim: AISTech, 2012, pp. 85–95.

  27. R. Chaudhary, G.G. Lee, B.G. Thomas, S.M. Cho, S.H. Kim, and O.D. Kwon: Metall. Mater. Trans. B., 2011, 42B, pp. 300-15.

    Article  Google Scholar 

  28. B. Li, and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 30-36.

    Article  CAS  Google Scholar 

  29. B. Li, and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 1833-38.

    Article  CAS  Google Scholar 

  30. F. Neumann, J. Neal, M.A. Pedroza, and A.H. Castillejos: Steel-making Conference Proceedings, Pittsburgh, ISS, 1996, pp. 249–57.

  31. K.C. Mills: ECSC Final Report, Contract 7210 ca/131/810, 1983.

  32. M.G. Goldschmit, J.C. Gonzalez, and E.N. Dvorkin: Iron and Steelmaking, 1993, vol. 20, pp. 379-85.

    CAS  Google Scholar 

  33. J. Yoshida, T. Ohmi, and M.M. Iguchi: ISIJ Int., 2005, vol. 45, pp. 1160-64.

    Article  CAS  Google Scholar 

  34. N. Kasai and M. Iguchi: ISIJ Int., 2007, vol. 47, pp. 982-87.

    Article  CAS  Google Scholar 

  35. L.C. Hibbeler and B. G. Thomas: Iron and Steel Technology, 2013, vol. 10, pp. 121–36.

    Google Scholar 

  36. J.M. Harman and A.W. Cramb: Steel-Making Conference Proceedings, ISS, Warrendale, P.A., 1996, pp. 773–84.

  37. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957-71.

    Article  CAS  Google Scholar 

  38. H. Tanaka, H. Kuwatori, and R. Nishihara: Tetsu-to-Hagané, 1992, vol. 78 pp. 761.

    Article  CAS  Google Scholar 

  39. K.C. Mill, and C.A. Dacker (2019) The Casting Powders Book. Springer, Berlin

    Google Scholar 

Download references

Acknowledgment

The research was supported by the people of POSCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Wook Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, S., Cho, JW., Park, SH. et al. Slag Pool Depth Effectiveness of Molten Mold Flux Feeding Technology. Metall Mater Trans B 51, 1965–1972 (2020). https://doi.org/10.1007/s11663-020-01881-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01881-1

Navigation