Skip to main content
Log in

Simulation and Application of Submerged CO2-O2 Injection in Electric Arc Furnace Steelmaking: Modeling and Arrangement of Submerged nozzles

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The technology of submerged CO2-O2 injection was developed to enhance the circulation in liquid baths and accelerate the smelting reaction rate in electric arc furnace (EAF) steelmaking. In this study, the effect of submerged gas injection on the EAF liquid bath flowing characteristics was studied and analyzed using numerical simulations, water model experiments, and industrial application research. The results demonstrate that the flow rate of the gas supply, horizontal arrangement mode, and vertical dip angle of the submerged nozzle have a significant impact on stirring in the liquid bath. The horizontal arrangement mode of the two submerged nozzles influences bath circulation in the EAF by determining the collision among the fluid flow streams due to the promotion of submerged nozzles. Compared with Mode A and Mode C, Mode B can improve the molten bath stirring with better temperature and composition homogeneity. The erosion rate of the fire brick around the submerged nozzle in Mode B is 2.42 mm/heat, which is less than that in both Mode A and Mode C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B. Lee and I. Sohn: JOM, 2014, vol. 66, pp. 1581-94.

    Article  CAS  Google Scholar 

  2. M. Lv, R. Zhu, and L. Yang: Steel Research Int., 2019, vol. 90, 1800454.

    Article  Google Scholar 

  3. L.F. Li, M.F. Jiang, and Z.Y. Duan: Steelmaking, 1996, vol. 12 (2), pp. 49-52.

    Google Scholar 

  4. M. Lv and R. Zhu: Metall. Res. Technol. 2019, vol. 116, 502.

    Article  CAS  Google Scholar 

  5. M. Alam, J. Naser, G. Brooks and A Fontana: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1354-67.

    Article  CAS  Google Scholar 

  6. M. Alam, J. Naser, G. Brooks and A. Fontana: ISIJ Int., 2012, vol. 52, pp. 1026-35.

    Article  CAS  Google Scholar 

  7. G. Wei, R. Zhu, X. Wu, K. Dong, L. Yang, and R. Liu: JOM, 2018, vol. 70, pp. 969-76.

    Article  CAS  Google Scholar 

  8. G. Wei, R. Zhu, T. Tang, K. Dong, and X. Wu: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1077-90.

    Article  CAS  Google Scholar 

  9. F.H. Liu, R. Zhu, K. Dong, X. Bao, S. L. Fan. ISIJ Int., 2015, vol. 55, pp. 2365-73.

    Article  CAS  Google Scholar 

  10. M. Ramirez, J. Alexis, G. Trapaga, P. Jönsson, and J. Mckelliget: ISIJ Int., 2001, vol. 41, pp. 1146-55.

    Article  CAS  Google Scholar 

  11. M. Alam, G. Irons, G. Brooks, A. Fontana, J. Naser: ISIJ Int., 2011, vol. 51, pp. 1439-47.

    Article  CAS  Google Scholar 

  12. J. Ma, P. Zhou and W. Cheng: Experimental Thermal & Fluid Science, 2016, vol. 75, pp. 220-27.

    Article  Google Scholar 

  13. S. Zhan, C. Lai and T. Hsiao: J. CENT. SOUTH UNIV. TECHNOL., 2003, Vol. 32, pp. 148-51.

    Google Scholar 

  14. G. Caffery, D. Warnica, N. Molloy and M. Lee: Int. Conf. on CFD in Minaral & Metal Processing and Power Generation, CSIRO, 1977, pp. 87–100.

  15. B. Li: ISIJ Int., 2000, vol. 40, pp. 863-69.

    Article  CAS  Google Scholar 

  16. V. Singh, J. Kumar, C. Bhanu, S. K. Ajmani, and S. K. Dash: ISIJ Int., 2007, vol. 47, pp. 1605-12.

    Article  CAS  Google Scholar 

  17. X. Zhou, M. Ersson, L. Zhong, J. Yu, and P. Jonsson: Steel Res. Int., 2014, vol. 85, pp. 273-81.

    Article  CAS  Google Scholar 

  18. M. J. (1993) Norusis: SPSS for Windows: Base System User’s Guide Release 5.0. 1993. Chicago, IL:SPSS

    Google Scholar 

  19. C.W. Hirt and B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-25.

    Article  Google Scholar 

  20. G. Wei, R. Zhu, K. Dong, G. Ma, and T. Cheng: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3066-79.

    Article  Google Scholar 

  21. B.E. Launder and D.B. Spalding: Lectures in Mathematical Model of Turbulence, Academic Press, London, 1972, pp. 124-29.

    Google Scholar 

  22. Q. Li, M. Li, S. Kuang, and Z. Zou: Can. Metall. Q., 2014, vol. 53, pp. 340-51.

    Article  Google Scholar 

  23. A. Pnrunak: Technometrics, 1988, vol. 30, pp. 237-39.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks for the support by the Fundamental Research Funds for the Central Universities (FRF-TP-19-031A1), the China Postdoctoral Science Foundation (2019M660459), and the National Nature Science Foundation of China (No. 51734003, No. 51804345, & No. 51604022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhu or Shufeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 09, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Zhu, R., Han, B. et al. Simulation and Application of Submerged CO2-O2 Injection in Electric Arc Furnace Steelmaking: Modeling and Arrangement of Submerged nozzles. Metall Mater Trans B 51, 1101–1112 (2020). https://doi.org/10.1007/s11663-020-01816-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01816-w

Navigation