Skip to main content
Log in

Deoxidation Behavior of Zr Powder Manufactured by Using Self-Propagating High-Temperature Synthesis with Mg Reducing Agent

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the deoxidation behavior of Zr powder with the use of a Mg reductant is discussed. The original Zr powder was produced by the hydride-dehydride (HDH) method. The raw Zr powder has a thick surface oxide layer of 43 nm as well as high oxygen concentration in the inner part of the powder. The raw Zr powder carries out the reduction reaction with the Mg agent, which maintains self-propagating high-temperature synthesis (SHS) by releasing significant exothermic heat, thereby decreasing the oxygen content. The surface oxide layer of the deoxidized Zr powder is thinner than that of the raw Zr powder, as observed by transmission electron microscopy (TEM) and Auger electron spectroscopy (AES). Furthermore, the oxygen atoms in the inner part of the Zr powder are easily released by a bcc structure providing more active migration of interstitial atoms induced by the open structure at high temperature, and the emitted oxygen atoms readily react with the Mg agent. The lattice parameters of the deoxidized Zr powders, therefore, are decreased with the reduction of oxygen content in comparison with the raw Zr powder because of shrinkage by the decrease of the excess oxygen interstitial atoms. These results are consistent with the observation that the oxygen content in the raw and deoxidized Zr powder was reduced from 0.595 to 0.338 wt pct due to the decreased surface oxide layer and oxygen content in the inner part of the Zr powder, respectively. It is, thus, confirmed that the Mg agent is capable of playing an important role in the deoxidation behavior in Zr powder to obtain high-purity Zr powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. M. Hrovat, D. Belavic, A. Bencan, and J. Holc: J. Eur. Ceram. Soc., 2003, vol. 23, pp. 1441–47.

    Article  CAS  Google Scholar 

  2. Nielsen R, Chang TW (1996) Ullman’s Encyclopaedia of Industrial Chemistry, 5th ed. Wiley, New York, pp. 543–67.

    Google Scholar 

  3. T.A. Giogri, B. Ferraio, and B. Storey: J. Vac. Sci. Technol. A, 1985, vol. 3, pp. 417–25.

    Article  Google Scholar 

  4. J.S. Park, W.B. Kim, and M.S. Won: Mater. Trans., 2007, vol. 48 (5), pp. 1012–16.

    Article  CAS  Google Scholar 

  5. C. Benvenuti and P. Chggiato: Vacuum, 1993, vol. 44, pp. 511–13.

    Article  CAS  Google Scholar 

  6. X.Y. Cui, Q. Li, K.C. Chou, S.L. Chen, G.W. Lin, and K.D. Xu: Intermetallics, 2008, vol. 16, pp. 662–67.

    Article  CAS  Google Scholar 

  7. E.Y. Anikina and V.N. Vervetsky: J. Alloys Compd., 2007, vol. 446–447, pp. 443–46.

    Article  Google Scholar 

  8. Kim JH, Lee H, Hwanga KT, Han JS (2009) Int. J. Hydr. Energy 34:9424–30

    Article  CAS  Google Scholar 

  9. Y.K. Agrawal and S. Sudhaka: Separ. Purif. Technol., 2002, vol. 27, pp. 111–19.

    Article  CAS  Google Scholar 

  10. N.N. Greenwood and A. Earnshaw: Chemistry of the Elements, 2nd ed. Oxford: Butterworth-Heinemann. 1997, pp. 954–75.

    Google Scholar 

  11. C. Zheng, T. Ouchi, A. Iizuka, Y. Taninouchi, and T.H. Okabe: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 622–31.

    Article  Google Scholar 

  12. L. Kong, T. Ouchi, and T.H. Okabe: Mater. Trans., 2019, vol. 60 (9), pp. 2059–68.

    Article  CAS  Google Scholar 

  13. O.D. Neikov, S.S. Naboychenko, and I.B. Murashova: Handbook of Non-Ferrous Metal Powders, 2nd ed. Elsevier, New York, 2019, pp. 757–829.

    Book  Google Scholar 

  14. Murray JL, Wriedt HA (1987) Bull. Alloy Phase Diag. 8(2):148–65

    Article  CAS  Google Scholar 

  15. G. Ottaviani, F. Nava, G. Queirolo, G. Iannuzzi, G. De Santi, and K.N. Tu: Thin Solid Films, 1987, vol. 146, pp. 201–07.

    Article  CAS  Google Scholar 

  16. T.H. Okabe: Ph.D. Thesis, Kyoto University, Kyoto, Japan, 1993.

  17. M.T. Epworth and R. Schuhmann, Jr.: Trans. TMS-AIME, 1962, vol. 224, pp. 928–35.

    Google Scholar 

  18. R.O. Suzuki, K. Teranuma, and K. Ono: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 287–95.

    Article  CAS  Google Scholar 

  19. T.H. Okabe, K. Hirota, E. Kasai, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compd., 1998, vol. 279, pp. 184–91.

    Article  CAS  Google Scholar 

  20. T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.

    Article  CAS  Google Scholar 

  21. K. Hirota, T.H. Okabe, F. Saito, Y. Waseda, and K.T. Jacob: J. Alloys Compd., 1999, 282, pp. 101–08.

    Article  CAS  Google Scholar 

  22. C.J. Baroch and G.H. Beyer: U.S. Atomic Energy Commission Report No. ISC-720, U.S. Atomic Energy Commission, Washington, DC, 1956, pp. 1–18.

  23. M. Eshed, S. Pol, A. Gedanken, and M. Balasubramanian: Beilstein J. Nanotechnol., 2011, vol. 2, pp. 198–203.

    Article  CAS  Google Scholar 

  24. D.P. Barbis, R.M. Gasior, G.P. Walker, J.A. Capone, and T.S. Schaeffer: Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Oxford. 2015, pp. 101–16.

    Book  Google Scholar 

  25. T.S. Krishnan and S. Chaudhary: Trans. Powd. Metall. Assoc. India, 1976, vol. 3, pp. 56–63.

    CAS  Google Scholar 

  26. M. Mitkov and D. Božić: Mater. Charact., 1996, vol. 37, pp. 53–60.

    Article  CAS  Google Scholar 

  27. B.A. Kolachev, P.D. Drozdov, and N.Y. Guselnikov: Izv. Vuzov. Tsvet. Metallurgiya, 1975, vol. 5, pp. 71–74.

    Google Scholar 

  28. X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher: Nat. Commun., 2014, vol. 5 (4908), pp. 1–7.

    Google Scholar 

  29. A.G. Merzhanov and A.E. Sytschev: SHS for Materials, Combustion Science & Technology Book Series, vol. 5. Taylor & Francis, New York, 2002, pp. 301–22.

    Google Scholar 

  30. J.M. Oh, B.K. Lee, C.Y. Suh, S.W. Cho, and J.W. Lim: Powder Metall., 2012, vol. 55, pp. 402–04.

    Article  CAS  Google Scholar 

  31. J.W. Lim, J.M. Oh, B.K. Lee, C.Y. Suh, and S.W. Cho: U.S. Patent No. 8,449,646, 2013.

  32. G. Lutjering and J.C. Williams: Titanium, Springer, New York, 2007.

    Google Scholar 

  33. M.H. Song, S.M. Han, D.J. Min, G.S. Choi, and J.H. Park: Scripta Mater., 2008, vol. 59, pp. 623–26.

    Article  CAS  Google Scholar 

  34. K.H. Heo, N.R. Munirathnam, J.W. Lim, M.T. Le, and G.S. Choi: Mater. Chem. Phys., 2008, vol. 112, pp. 923–27.

    Article  CAS  Google Scholar 

  35. J.M. Oh, B.G. Lee, S.W. Cho, S.W. Lee, G.S. Choi, and J.W. Lim: Met. Mater. Int., 2011, vol. 17, pp. 733–36.

    Article  CAS  Google Scholar 

  36. R.A. Versaci and M. Ipohorski: Cómision Nacional de Energía Atómica, Buenos Aires, Argentina, 1991.

    Google Scholar 

  37. B. Puchala and A. Van der Ven: Phys. Rev. B, 2013, vol. 88, pp. 1–15.

    Article  Google Scholar 

  38. J.M. Oh, H. Kwon, W.B. Kim, and J.W. Lim: Thin Solid Films, 2014, vol. 551, pp. 98–101.

    Article  CAS  Google Scholar 

  39. N. Stojilovic, E.T. Bender, and R.D. Ramsier: Progr. Surf. Sci., 2005, vol. 78, pp. 101–84.

    CAS  Google Scholar 

  40. Y. Chen, Q. Hu, S. Pan, H. Zhang, H. Liu, B. Zhu, X. Liu, and W. Liu: Metals, 2019, vol. 9 (524), pp. 1–27.

    Google Scholar 

  41. R. Shao, S. Chen, Z. Dou, J. Zhang, X. Ma, R. Zhu, J. Xu, P. Gao, and D. Yu: Nano Lett., 2018, vol. 18 (9), 6094–99.

    Article  CAS  Google Scholar 

  42. Y. Wang, C. Cai, L. Li, Y. Li, Y. Zhou, and G. Zhou: AIP Adv., 2016, vol. 6 (95113), pp. 1–9.

    Google Scholar 

  43. H. Shen, L.A. Bendersky, K. Young, and J. Nei: Materials, 2015, vol. 8 (7), pp. 4618–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Lae Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.L., Yun, C.G., Ju, J.H. et al. Deoxidation Behavior of Zr Powder Manufactured by Using Self-Propagating High-Temperature Synthesis with Mg Reducing Agent. Metall Mater Trans B 51, 1070–1078 (2020). https://doi.org/10.1007/s11663-020-01815-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01815-x

Navigation