Skip to main content
Log in

Hydration and Crystallization Behavior of MgO in Cold-Bonded Pellets Containing Basic Oxygen Furnace Dust

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Basic oxygen furnace (BOF) dust is a kind of solid waste in the metallurgical steelmaking process, which contains more than 50 pct total iron and a certain amount of overburned MgO and CaO. Based on the nonhydraulic cementitious property of MgO in BOF dust, MgCl2 is added together as a binder to prepare cold-bonded pellets returning to BOF, which is the most economical route to recycle secondary resources. In this study, we investigated the hydration and crystallization behavior of MgO-based binder prepared by MgO superheated at 1500 °C and MgCl2 in cold-bonded BOF dust pellets, to solve the problem of whether the overburned MgO can be hydrated with MgCl2 to form crystalline phases, and generated nonhydraulic cementitious structure with high strength to consolidate the pellets. The results show that the overburned MgO prepared at 1500 °C and MgCl2 can form adhesive gels to absorb BOF dust particles by hydration reaction. The gels develop to 5Mg(OH)2·MgCl2·8H2O crystalline phase with a reticular structure after solidification, and the crystalline phase produces pellet mechanical strength by wrapping and connecting bridge. The hydration reaction produced by overburned MgO is incomplete, and the hydration reaction degree is 50 to 65 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Wang, Q.G. Xue, Y.X. Zhao, X.F. She, and J.S. Wang: Ironmak. Steelmak., 2014, vol. 41, pp. 591–97.

    Article  CAS  Google Scholar 

  2. F.M. Zhang, X.C. Cui, and D.G. Zhang: J. Iron Steel Res. Int., 2011, vol. s2, pp. 42–51.

    Article  Google Scholar 

  3. H. Zhou, F.M. Zhang, D.G. Zhang, and L.Y. Zhang: Adv. Mater. Res., 2013, vol. 610, pp. 1422–25.

    Google Scholar 

  4. M. Nakano, T. Okada, H. Hasegawa, and M. Sakakibara: ISIJ Int., 2000, vol. 40, pp. 238–43.

    Article  CAS  Google Scholar 

  5. X.F. She, J.S. Wang, Q.G. Xue, Y.G. Ding, S.S. Zhang, J.J. Dong, and H. Zeng: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 277–84.

    Article  CAS  Google Scholar 

  6. F. Su, H.O. Lampinen, and R. Robinson: ISIJ Int., 2004, vol. 44, pp. 770–76.

    Article  CAS  Google Scholar 

  7. S.K. Kawatra and S.J. Ripke: Int. J. Miner. Process., 2002, vol. 65, pp. 165–75.

    Article  CAS  Google Scholar 

  8. G. Qiu, T. Jiang, Z. Huang, D. Zhu, and X. Fan: ISIJ Int., 2003, vol. 43, pp. 20–25.

    Article  CAS  Google Scholar 

  9. J.A. Halt and S.K. Kawatra: Min. Metall. Explor., 2014, vol. 31, pp. 73–94.

    CAS  Google Scholar 

  10. O.A. Mohamed, M.E.H. Shalabi, N.A. El-Hussiny, M.H. Khedr, and F. Mostafa: Powder Technol., 2003, vol. 130, pp. 277–82.

    Article  CAS  Google Scholar 

  11. K. Ikeda: Cem. Concr. Res., 1997, vol. 27, pp. 657–63.

    Article  CAS  Google Scholar 

  12. D.K. Dutta, D. Bordoloi, S. Gupta, P.C. Borthakur, T.M. Srinivasan, and J.B. Patil: Int. J. Miner. Process., 1992, vol. 34, pp. 149–59.

    Article  CAS  Google Scholar 

  13. J.A. Halt, S.C. Roache, and S.K. Kawatra: Miner. Process Extr. Metall. Rev., 2015, vol. 6, pp. 192–97.

    Article  Google Scholar 

  14. R.M. Lawrence, T.J. Mays, S.P. Rigby, P. Walker, and D. Ayala: Cem. Concr. Res., 2007, vol. 37, pp. 1059–69.

    Article  CAS  Google Scholar 

  15. S. Sorel: C. R. Hebd. Acad. Sci., 1867, vol. 65, pp. 102–04.

    Google Scholar 

  16. P.M.D. Wolff and L. Walter-Lévy: Acta Cryst., 1953, vol. 6, pp. 40–44.

    Article  Google Scholar 

  17. T. Demediuk, W. Cole, and H. Hueber: Aust. J. Chem., 1955, vol. 8, pp. 215–32.

    Article  CAS  Google Scholar 

  18. B. Tooper and L. Cartz: Nat. Phys. Sci., 1966, vol. 211, pp. 64–66.

    Article  CAS  Google Scholar 

  19. Z. Li and C.K. Chau: Cem. Concr. Res., 2007, vol. 37, pp. 866–70.

    Article  CAS  Google Scholar 

  20. Z. Liu, M. Balonis, J. Huang, A. Sha, and G. Sant: Am. Ceram. Soc., 2017, vol. 100, pp. 3246–61.

    Article  CAS  Google Scholar 

  21. V.M. Sglavo, F.D. Genua, A. Conci, R. Ceccato, and R. Cavallini: J. Mater. Sci., 2011, vol. 46, pp. 6726–33.

    Article  CAS  Google Scholar 

  22. S.A. Walling and J.L. Provis: Chem. Rev., 2016, vol. 116, pp. 4170–4204.

    Article  CAS  Google Scholar 

  23. B. Matkovic and J.F. Young: Nat. Phys. Sci., 1973, vol. 246, pp. 79–80.

    Article  CAS  Google Scholar 

  24. Z. Ding and Z. Li: ACI Mater. J., 2005, vol. 102, p. 375.

    CAS  Google Scholar 

  25. C.K. Chau, J. Chan, and Z. Li: Cem. Concr. Comp., 2009, vol. 31, pp. 250–54.

    Article  CAS  Google Scholar 

  26. R. Siddique and T.R. Naik: Waste Manag., 2004, vol. 24, pp. 563–69.

    Article  CAS  Google Scholar 

  27. F.C. Harper: J. Chem. Technol. Biotech., 1967, vol. 17, pp. 5–10.

    CAS  Google Scholar 

  28. B. Matkovic, S. Popović, V. Rogić, T. Žunić, and J.F. Young: J. Am. Ceram. Soc., 1977, vol. 60, pp. 504–07.

    Article  CAS  Google Scholar 

  29. B. Xu, H. Ma, C. Hu, S. Yang, and Z. Li: Constr. Build. Mater., 2016, vol. 102, pp. 613–19.

    Article  CAS  Google Scholar 

  30. C.K. Chau and Z. Li: Mater. Struct., 2008, vol. 41, pp. 853–62.

    Article  CAS  Google Scholar 

  31. Y. Karimi and A. Monshi: Ceram. Int., 2011, vol. 37, pp. 2405–10.

    Article  CAS  Google Scholar 

  32. D. Deng and C. Zhang: Cem. Concr. Res., 1999, vol. 29, pp. 1365–71.

    Article  Google Scholar 

  33. G. Roque, J. Wambaugh, B. Rochner, and C.L. Kitchens: J. Mater. Sci., 2017, vol. 52, pp. 7637–46.

    Article  Google Scholar 

  34. K. Sugimoto, R.E. Dinnebier, and T. Schlecht: Acta Crystallogr. B, 2007, vol. 63, pp. 805–11.

    Article  CAS  Google Scholar 

  35. H. Bilinski, B. Matković, C. Mažuranić, and T.B. Žunić: J. Am. Ceram. Soc., 1984, vol. 67, pp. 266–69.

    Article  CAS  Google Scholar 

  36. S. Xia, P. Xing, and S. Gao: Thermochim. Acta, 1991, vol. 183, pp. 349–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the National Natural Science Foundation of China (Grant No. 51574050) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 11, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, P., Zhu, X. et al. Hydration and Crystallization Behavior of MgO in Cold-Bonded Pellets Containing Basic Oxygen Furnace Dust. Metall Mater Trans B 51, 1016–1026 (2020). https://doi.org/10.1007/s11663-020-01814-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01814-y

Navigation