Skip to main content
Log in

Strength and Bonding Mechanism of Nonhydraulic Cementitious Binders: Reutilization of MgO in Basic Oxygen Furnace Dust

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Basic Oxygen Furnace (BOF) dust is a secondary resource with high total iron (TFe) content produced in metallurgical steelmaking process. It is the most economical way to recycle BOF dust by adding binders to prepare cold-bonded pellets and returning to BOF for steelmaking. Nevertheless, the digestion reaction of dead-burned MgO and CaO contained in BOF dust causes expansion and cracking of the pellets. Based on the hydration mechanism of nonhydraulic cementitious materials, it was first proposed to use the dead-burned MgO contained in BOF dust as a binder raw material, mixed with MgCl2 or KH2PO4 to form magnesium oxychloride (MOC) or magnesium potassium phosphate (MKP) binder to prepare cold-bonded pellets, while simultaneously consuming MgO and reducing the expansion stress generated by digestion reaction. In this paper, a comparative analysis of strength and bonding mechanism of the two binders is carried out to lay the foundation theory for their rational application. The results show that MKP and MOC binders are beneficial to improve the early and later strength of pellets respectively. The acicular 5 phase crystals formed by MOC binder have strong surface polarity and high bonding strength. They are interlocked to generate a network structure, which forms a unified whole with high strength after the dust particles are wrapped; the prismatic K-Struvite crystals formed by MKP binder have strong intermolecular force and high binder self-strength. They are embedded in the gaps between the dust particles and form solid bridges to improve the pellet strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Gritzan and D. Neuschütz: Steel Res., 2001, vol. 72, pp. 324-30.

    Article  CAS  Google Scholar 

  2. F. Su, H.O. Lampinen and R. Robinson: ISIJ Int., 2004, vol. 44, pp. 770-76.

    Article  CAS  Google Scholar 

  3. D.S. Kumar, R. Sah, V.R. Sekhar and S.C. Vishwanath: Ironmak. Steelmak., 2017, vol. 44, pp. 134-39.

    Article  CAS  Google Scholar 

  4. J. Hou, Y. Lv, J. Liu and Q. Wu: Mater. Struct., 2018, vol. 51, p. 113.

    Article  CAS  Google Scholar 

  5. E. Serris, L. Favergeon, M. Pijolat, M. Soustelle, P. Nortier, R.S. Gärtner and Z. Habib: Cem. Concr. Res., 2011, vol. 41, pp. 1078-84.

    Article  CAS  Google Scholar 

  6. I.E. Doronin and A.G. Svyazhin: Metallurgist, 2012, vol. 55, pp. 879-86.

    Article  CAS  Google Scholar 

  7. R. Jia and J. Liu: Adv. Mater. Sci. Eng., 2016, vol. 2016, pp. 1-15.

    Google Scholar 

  8. X. Li, P. Tang, X. Zhu, P. Qin and G. Wen: Metall. Mater. Trans. B, 2020, vol. 51, pp. 1016-26.

    Article  Google Scholar 

  9. X. Li, P. Tang, P. He, X. Zhu and G. Wen: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2400-12.

    Article  Google Scholar 

  10. B. Tooper and L. Cartz: Nature, 1966, vol. 211, pp. 64-66.

    Article  CAS  Google Scholar 

  11. B. Matkovic and J.F. Young: Nature, 1973, vol. 246, pp. 79-80.

    Article  CAS  Google Scholar 

  12. C.K. Chau and Z. Li: Mater. Struct., 2008, vol. 41, pp. 853-62.

    Article  CAS  Google Scholar 

  13. M.A. Haque and B. Chen: Constr. Build. Mater., 2019, vol. 211, pp. 885-98.

    Article  CAS  Google Scholar 

  14. B. Xu, F. Winnefeld, J. Kaufmann and B. Lothenbach: Cem. Concr. Res., 2019, vol. 123, p. 105781.

    Article  CAS  Google Scholar 

  15. M. Le Rouzic, T. Chaussadent, G. Platret and L. Stefan: Cem. Concr. Res., 2017, vol. 91, pp. 117-22.

    Article  Google Scholar 

  16. Z. Li and C.K. Chau: Cem. Concr. Res., 2007, vol. 37, pp. 866-70.

    Article  CAS  Google Scholar 

  17. Z. Liu, M. Balonis, J. Huang, A. Sha and G. Sant: J. Am. Ceram. Soc., 2017, vol. 100, pp. 3246-61.

    Article  CAS  Google Scholar 

  18. B. Xu, H. Ma and Z. Li: Cem. Concr. Res., 2015, vol. 68, pp. 1-9.

    Article  CAS  Google Scholar 

  19. B. Xu, B. Lothenbach, A. Leemann and F. Winnefeld: Cem. Concr. Res., 2018, vol. 108, pp. 140-51.

    Article  CAS  Google Scholar 

  20. H. Lahalle, C.C.D. Coumes, C. Mercier, D. Lambertin, C. Cannes, S. Delpech and S. Gauffinet: Cem. Concr. Res., 2018, vol. 109, pp. 159-74.

    Article  CAS  Google Scholar 

  21. G. Zhang, Y. Sun and Y. Xu: Renew. Sust. Energ. Rev., 2018, vol. 82, pp. 477-87.

    Article  CAS  Google Scholar 

  22. M.E. Fayed and L. Otten: Handbook of Powder Science & Technology, Springer, Boston, MA, 1997, pp. 202–377.

  23. D. Bika, G.I. Tardos, S. Panmai, L. Farber and J. Michaels: Powder Technol., 2005, vol. 150, pp. 104-16.

    Article  CAS  Google Scholar 

  24. H.C. Hamaker: Phy., 1937, vol. 4, pp. 1058-72.

    Article  CAS  Google Scholar 

  25. H.C.H. Rumpf: Chem. Ing. Tech., 1970, vol. 42, pp. 538-40.

    Article  Google Scholar 

  26. K. Sugimoto, R.E. Dinnebier and T. Schlecht: Acta Crystallogr. Sect. B, 2007, vol. 63, pp. 805-11.

    Article  CAS  Google Scholar 

  27. H. Bilinski, B. Matković, C. Mažuranić and T.B. Žunić: J. Am. Ceram. Soc., 1984, vol. 67, pp. 266-69.

    Article  CAS  Google Scholar 

  28. M. Mathew and L.W. Schroeder: Acta Crystallogr. Sect. B, 1979, vol. 35, pp. 11-13.

    Article  Google Scholar 

  29. G. Ferraris, H. Fuess and W. Joswig: Acta Crystallogr. Sect. B, 1986, vol. 42, pp. 253-58.

    Article  Google Scholar 

  30. K. Sugimoto, R.E. Dinnebier and T. Schlecht: J. Appl. Crystallogr., 2006, vol. 39, pp. 739-44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for support from the National Natural Science Foundation of China (Grant No. 51574050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2020; accepted January 23, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tang, P., Fu, Q. et al. Strength and Bonding Mechanism of Nonhydraulic Cementitious Binders: Reutilization of MgO in Basic Oxygen Furnace Dust. Metall Mater Trans B 52, 1322–1332 (2021). https://doi.org/10.1007/s11663-021-02095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02095-9

Navigation