Skip to main content
Log in

Nutrient Supply to Seawater from Steelmaking Slag: The Coupled Effect of Gluconic Acid Usage and Slag Carbonation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Vanishing of seaweeds in coastal areas has become a serious environmental problem. Part of the reason is nutrient deficiency in seawater, especially iron. Steelmaking slag is probably one of the best nutrient suppliers in terms of cost and quantity. Utilizing steelmaking slag to fertilize coastal seaweeds may simultaneously address the two challenges of seaweed restoration and byproduct treatment. However, direct usage of slag from a basic oxygen furnace is not practical because of negative effects such as a sharp pH increase and magnesium loss. To address the disadvantages, this work investigated the leaching behavior of a practical steelmaking slag in an artificial seawater and clarified the coupled effect of gluconic acid usage and slag carbonation on aiding the nutrient supply. Slag carbonation prevents a drastic pH increase and Mg loss, while gluconic acid induces formation of stable chelated complexes. The combination of slag carbonation and gluconic acid usage results in significant improvements in the nutrient supply. By leaching the slag, the maximum concentration of Fe in seawater increases to 0.29 mg L−1, 193 times larger than the value in the initial seawater (1.5 μg L−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. 1 J.W. Fourqurean, C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, and O. Serrano: Nat. Geosci., 2012, vol. 5, pp. 505–9.

    Article  CAS  Google Scholar 

  2. 2 E.M. Marzinelli, A.H. Campbell, A. Vergés, M.A. Coleman, B.P. Kelaher, and P.D. Steinberg: J. Appl. Phys., 2014, vol. 26, pp. 1089–96.

    Google Scholar 

  3. 3 D.I. Walker and A.J. McComb: Mar. Pollut. Bull., 1992, vol. 25, pp. 191–5.

    Article  Google Scholar 

  4. 4 Y. Serisawa, Z. Imoto, T. Ishikawa, and M. Ohno: Fish. Sci., 2004, vol. 70, pp. 189–91.

    Article  CAS  Google Scholar 

  5. 5 Y. Suzuki, K. Kuma, I. Kudo, and K. Matsunaga: Phycologia, 1995, vol. 34, pp. 201–5.

    Article  Google Scholar 

  6. K. Matsunaga, J. Nishioka, K. Kuma, K. Toya, and Y. Suzuki: Water Res. 1998, 32:3436-3442. 10.1016/S0043-1354(98)00113-4

    Article  CAS  Google Scholar 

  7. 7 M. Yamamoto, M. Fukushima, and D. Liu: Tetsu-to-Hagané, 2011, vol. 97, pp. 159–64.

    Article  CAS  Google Scholar 

  8. 8 M. Yamamoto, M. Fukushima, E. Kiso, T. Kato, M. Shibuya, S. Horiya, A. Nishida, K. Otsuka, and T. Komai: J. Chem. Eng. Jpn, 2010, vol. 43, pp. 627–34.

    Article  CAS  Google Scholar 

  9. 9 A. Blazevic, E. Orlowska, W. Kandioller, F. Jirsa, B.K. Keppler, M. Tafili-Kryeziu, W. Linert, R.F. Krachler, R. Krachler, and A. Rompel: Angew. Chem. Int. Ed., 2016, vol. 55, pp. 6417–22.

    Article  CAS  Google Scholar 

  10. U.S. Geological Survey: Mineral Commodity Summaries 2018, 2018.

  11. 11 N. Ma and J.B. Houser: J. Clean. Prod., 2014, vol. 82, pp. 221–31.

    Article  CAS  Google Scholar 

  12. 12 X. Gao, M. Okubo, N. Maruoka, H. Shibata, T. Ito, and S.Y. Kitamura: Miner. Process. Extr. Metall., 2015, vol. 124, pp. 116–24.

    Article  CAS  Google Scholar 

  13. 13 K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, and T. Nagasaka: ISIJ Int., 2007, vol. 47, pp. 1541–8.

    Article  CAS  Google Scholar 

  14. 14 Y. Li and W. Dai: J. Clean. Prod., 2018, vol. 175, pp. 176–89.

    Article  CAS  Google Scholar 

  15. 15 H. Nakata, M. Yamaguchi, Y. Morinishi, and K. Masuda: Tetsu-to-Hagané, 2003, vol. 89, pp. 393–400.

    Article  CAS  Google Scholar 

  16. 16 T. Miki, T. Futatsuka, K. Shitogiden, T. Nagasaka, and M. Hino: ISIJ Int., 2004, vol. 44, pp. 762–9.

    Article  CAS  Google Scholar 

  17. 17 Y. Nakamura, A. Taniguchi, S. Okada, and M. Tokuda: ISIJ Int., 1998, vol. 38, pp. 390–8.

    Article  CAS  Google Scholar 

  18. 18 Y. Nakamura, T. Sato, K. Shitogiden, Y. Saito, H. Nakata, and A. Taniguchi: Tetsu-to-Hagané, 2003, vol. 89, pp. 438–45.

    Article  CAS  Google Scholar 

  19. 19 X. Zhang, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 928–33.

    Article  CAS  Google Scholar 

  20. 20 X. Zhang, H. Atsumi, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1443–9.

    Article  CAS  Google Scholar 

  21. 21 X. Zhang, H. Matsuura, and F. Tsukihashi: J. Sustain. Metll., 2015, vol. 1, pp. 134–43.

    Article  Google Scholar 

  22. 22 X. Zhang, H. Matsuura, and F. Tsukihashi: J. Sustain. Metll., 2016, vol. 2, pp. 123–32.

    Article  Google Scholar 

  23. 23 H. Matsuura, X. Zhang, L. Zang, G. Zhang, and F. Tsukihashi: Miner. Process. Extr. Metall., 2017, vol. 126, pp. 11–21.

    Article  CAS  Google Scholar 

  24. 24 Y. Lang, H. Matsuura, and F. Tsukihashi: J. Sustain. Metll., 2017, vol. 3, pp. 729–36.

    Article  Google Scholar 

  25. 25 W.M. Hayens, D.R. Ide, and T.J. Bruno, eds.: CRC Handbook of Chemistry and Physics, 97th Editi., CRC Press, Boca Raton, 2017.

    Google Scholar 

  26. L.H.N. Cooper: Proc. R. Soc. London Ser. B, 1937, vol. 124, pp. 299–307.

    CAS  Google Scholar 

  27. 27 A. Hayashi, H. Tozawa, K. Shimada, K. Takahashi, R. Kaneko, F. Tsukihashi, R. Inoue, and T. Ariyama: ISIJ Int., 2011, vol. 51, pp. 1919–28.

    Article  CAS  Google Scholar 

  28. 28 M. Yamamoto and D. Liu: J. Mater. Cycles Waste Manag., 2013, vol. 15, pp. 264–8.

    Article  CAS  Google Scholar 

  29. 29 D.T. Sawyer: Chem. Rev., 1964, vol. 64, pp. 633–43.

    Article  CAS  Google Scholar 

  30. 30 W.J.J. Huijgen, G.J. Witkamp, and R.N.J. Comans: Environ. Sci. Technol., 2005, vol. 39, pp. 9676–82.

    Article  CAS  Google Scholar 

  31. 31 M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, Second English Edition, National Association of Corrosion Engineers, Houston, 1974.

    Google Scholar 

  32. Chase Jr., M.W.: NIST-JANAF Themochemical Tables, Fourth Edition, 1998.

  33. 33 T. Misawa: Corros. Sci., 1973, vol. 13, pp. 659–76.

    Article  CAS  Google Scholar 

  34. 34 F.J. Prescott, J.K. Shaw, J.P. Bilello, and G.O. Cragwall: Ind. Engi. Chem., 1953, vol. 45, pp. 338–42.

    Article  CAS  Google Scholar 

  35. 35 T. Hamano, S. Fukagai, and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 490–5.

    Article  CAS  Google Scholar 

  36. 36 X. Yang, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2009, vol. 49, pp. 1298–307.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate Prof. Hiroyuki Matsuura’s (The University of Tokyo) assistance with the experiment and helpful comments.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, Y., Yang, X., Hisaka, Y. et al. Nutrient Supply to Seawater from Steelmaking Slag: The Coupled Effect of Gluconic Acid Usage and Slag Carbonation. Metall Mater Trans B 51, 1039–1047 (2020). https://doi.org/10.1007/s11663-020-01805-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01805-z

Navigation