Skip to main content
Log in

Growth Characteristics of Metallic Iron Particles in the Direct Reduction of Nickel Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Coal-based direct reduction of nickel slag and magnetic separation of iron are effective methods of secondary resource utilization. The growth characteristics of metallic iron particles in this process are of great significance for subsequent grinding and magnetic separation process. The nickel slag is mixed with coal powder and other additives in a certain proportion, and then subjected to a direct reduction experiment in a high-temperature furnace. Chemical analysis is made to obtain the components of the direct reduction product. The microstructure of the metallic iron particles in the reduction product was studied and the curves of average diameter change and the cumulative diameter percentage of the iron particles are obtained in the reduction process. The results show that the coal-based direct reduction technology can effectively reduce the iron oxides in the nickel slag, and the degree of metallization of the product can reach 91.89 pct. When the reduction time is increased from 10 to 60 minutes, the maximum size of metallic iron particles increases from 13 to 135 μm. The control mechanism of iron particle growth is complicated, and the process is divided into two stages. The growth kinetic parameters (kinetics index, activation energy, and pre-exponential factor) in the two stages are 0.4697, 249.04 kJ mol−1, 3.81 × 108 and 1.0774, 92.93 kJ mol−1, 217.30, respectively. The growth model of metallic iron particles in the direct reduction of nickel slag is also constructed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y.S. Sun, Q. Zhang, Y.X. Han, P. Gao and G.F. Li: JOM, 2018, vol. 70, pp. 144-49.

    Article  CAS  Google Scholar 

  2. C. Cheng, Q.G. Xue, G. Wang, Y.Y. Zhang and J.S. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 154-63.

    Article  Google Scholar 

  3. N. Peng, B. Peng, L.Y. Chai, M. Li, J.M. Wang, H. Yan and Y. Yuan: Miner. Eng., 2012, vol. 35, pp. 57-60.

    Article  CAS  Google Scholar 

  4. Y.S. Sun, Y.X. Han, P. Gao, Z.H. Wang, D.Z. Ren: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 411-19.

    Article  Google Scholar 

  5. C.F. Zhang, H.X. Liu and D.L. Zhong: Chin. J. of Nonferrous Met., 1999, vol. 9,pp. 805-10.

    CAS  Google Scholar 

  6. S. Wang, W. Ni, K.Q. Li, C.L. Wang and J.Y. Wang: Trans. Mater. Heat Treat., 2014, vol. 35, pp. 23-28.

    Google Scholar 

  7. S. Wang, W. Ni, K.Q. Li, C.L. Wang and J.Y. Wang: Trans. Mater. Heat Treat., 2015, vol. 36, pp. 7-12.

    Google Scholar 

  8. P. Gao, Y.S. Sun, D.Z. Ren and Y.X. Han: Miner. Metall. Process., 2013, vol. 30, pp. 74-78.

    CAS  Google Scholar 

  9. D.Q. Zhu, Y.Z. Xiao, T.J. Chun and J. Pan: Chin J Nonferrous Met., 2013, vol. 23, pp. 3242-47.

    Article  CAS  Google Scholar 

  10. J. Pan, G.L. Zhang, D.Q. Zhu and X.L. Zhou: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3421-27.

    Article  CAS  Google Scholar 

  11. Y.G. Guo, R. Zhu, Z.Y. Pei, M.S. Ma, Y. Wang and J. Liu: China Nonferrous Metall., 2017, vol. 10, pp. 75-80.

    Google Scholar 

  12. J. Luo, G.H. Li, Z.W. Peng, M.J. Rao, Y.B. Zhang and T. Jiang: JOM, 2016, vol. 68, 3015-21.

    Article  CAS  Google Scholar 

  13. P. Gao, Y.X. Han, Y.J. Li and Y.S. Sun: J. Northeast. Univ. Nat. Sci., 2012, vol. 33, pp. 133-36.

    CAS  Google Scholar 

  14. M.S. Chu, Z.G. Liu, Z.C. Wang, K.J. Wu and J.P. Lv: China Metall., 2011, vol. 21, pp. 17.

    CAS  Google Scholar 

  15. D.Q. Zhu, T.J. Chun and J. Pan: J. Univ. Sci. Technol. Beijing, 2011, vol. 33, pp. 1325-30.

    CAS  Google Scholar 

  16. H.Z. Liu, W.B. Hu, M.Y. Gu and R.J. Wu: J. Inorg. Mater., 2002, vol. 33, pp. 430-35.

    Google Scholar 

  17. H.D. Wang, H. Zhang, H.L. Li and Y.C. Tang: The Chinese Journal of Nonferrous Metals, 2007, vol. 17, pp. 991-95.

    Google Scholar 

  18. X.P. Zhang and S.L. Liu: J. Northeast Univ. Technol., 1993, vol. 14, pp. 28-31.

    Google Scholar 

  19. F.A. Nichols, J. Appl. Phys.: 1966, vol. 37, pp. 4599-02.

  20. G.S. Li, L.P. Li, B.G. Juliana and B.F. Woodfield: J. Am. Chem. Soc., 2005, vol. 127, pp. 8659-66.

    Article  CAS  Google Scholar 

  21. A.J. Song, M.Z. Ma, R.Z. Zhou, L. Wang, W.G. Zhang, C.L. Tan and R.P. Liu: Mater. Sci. Eng., 2012, vol. 538, pp. 219-23.

    Article  CAS  Google Scholar 

  22. R. Chaim, Mater. Sci. Eng., 2007, vol. 443, pp. 25-32.

    Article  Google Scholar 

Download references

Acknowledgment

We thank the National Natural Science Foundation of China (No. 51774224) for financial support for this research.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Li or Xiangdong Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 3, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Zhang, X. et al. Growth Characteristics of Metallic Iron Particles in the Direct Reduction of Nickel Slag. Metall Mater Trans B 51, 925–936 (2020). https://doi.org/10.1007/s11663-020-01799-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01799-8

Navigation