Electric Conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for High-Titania Slag Smelting Process

Abstract

The electric conductivity of high-titania slag of TiO2-Ti2O3-FeO-CaO-SiO2-Al2O3-MgO slag system was measured by means of four-electrode alternating current (AC) impedance method. The results show that high-titania slag exhibits a good electric conductivity, around 45 to 141 S cm−1 with slight dependence on the temperature, which is of several orders of magnitude higher than that of the silicate slags. Further, electric conductivity of high-titania slag decreased with the increasing FeO content, whereas, the increasing Ti3+/Ti4+ and TiO2 contents caused a significant increase in the electric conductivity. Based on the experimental results and the calculated results, the conductive mechanism of high-titania slag was discussed in detail. It can be concluded that the high-titania slag exhibits a characteristic of electronic–ionic mixed conductivity, but the effect of electronic conduction dominates above the liquidus temperature; however, with the decreasing temperature, the electronic conductivity was gradually weakened. The mechanism was postulated to be a random walk of electrons between tetravalent titanium and trivalent titanium dispersed in the melt.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    1. A. Mitchell and J. Cameron, Metallurgical & Materials Transactions B, 1971, vol. 2, pp. 3361-3366.

    Article  Google Scholar 

  2. 2.

    2. M. Barati and K. S. Coley, Metallurgical & Materials Transactions B, 2006, vol. 37, pp. 51-60.

    CAS  Article  Google Scholar 

  3. 3.

    3. S. C. Britten and U. B. Pal, Metallurgical & Materials Transactions B, 2000, vol. 31, pp. 733-753.

    CAS  Article  Google Scholar 

  4. 4.

    4. J. H. Liu, G. H. Zhang and K. C. Chou, Canadian Metallurgical Quarterly, 2015, vol. 54, pp. 170-176.

    CAS  Article  Google Scholar 

  5. 5.

    J.H. Liu, G.H. Zhang, and Z. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3359–63.

    CAS  Article  Google Scholar 

  6. 6.

    6. J. H. Liu, G. H. Zhang, Y. D. Wu and K. C. Chou, Metall. Mater. Trans. B, 2016, vol. 47, pp. 798-803.

    CAS  Article  Google Scholar 

  7. 7.

    7. J. H. Liu, G.-H. Zhang and K.-C. Chou, ISIJ International, 2015, vol. 55, pp. 2325-2331.

    CAS  Article  Google Scholar 

  8. 8.

    8. Y. X. Liu, J. H. Liu, G. H. Zhang, J. L. Zhang and K. C. Chou, High Temperature Materials & Processes, 2007, vol. 37, pp. 9-19.

    Google Scholar 

  9. 9.

    Z.Y. P, Z.Y. Zhou, J.X., and H.D. Wang: Tribol. Lett., 2019, vol. 67, pp. 1–8.

  10. 10.

    10. K. Mori and Y. Matsushita, Tetsu- to- Hagane 1956, vol. 42, pp.1024-1029.

    CAS  Article  Google Scholar 

  11. 11.

    11. H. Inouye, J. Tomlinson and J. Chipman, Transactions of the Faraday Society, 1953, vol. 49, pp. 796-801.

    CAS  Article  Google Scholar 

  12. 12.

    Reznichenko V (1967) Izvest Akad Nauk SSSR Metally 5:43-57

    Google Scholar 

  13. 13.

    13. S. Denisov, V. Degtyarev and V. Reznichenko, Izvest Akad Nauk SSSR, Metally. 1970,Vol. 1, pp. 80-82,

    Google Scholar 

  14. 14.

    14. Y. Nikitin, V. Lopatin and L. Barmin, Steel Ussr, 1973, vol. 3, pp. 122.

    Google Scholar 

  15. 15.

    A. Grau and D. Poggi: Canadian Institute of Mining and Metallurgy, Metallurgical Society of CIM Annual Volume Featuring “Hydrogen in Metals” and “Titanium”, 1978, vol. 17, pp. 97–102.

  16. 16.

    P. Evseev and A. Filippov: Izv. Vyssh. Uchebn. Zaved. Chern. Met., 1967, pp. 55–59.

  17. 17.

    17. K. Narita, T. Onoye, T. Ishii and K. I. Uemura, Tetsu-to-Hagané, 1975, vol. 61, pp. 2943-2951.

    CAS  Article  Google Scholar 

  18. 18.

    18. N. Shinozaki, K. Mizoguchi and Y. Suginohara, J Jpn I Met, 1978, vol. 42, pp. 162-168.

    CAS  Article  Google Scholar 

  19. 19.

    19. H. Sato and F. Sakao, Electrochem, 1958, vol. 26, pp. 560-568.

    Google Scholar 

  20. 20.

    20. K. Mori, Tetsu-to-Hagane, 1960, vol. 46, pp. 134-140.

    Article  Google Scholar 

  21. 21.

    21. M. Kato and S. Minowa, Transactions of the Iron and Steel Institute of Japan, 1969, vol. 9, pp. 39-46.

    CAS  Google Scholar 

  22. 22.

    A.S. Churkin, Y.M. Tsikarev, G.A. Toporishchev, V.I. Lazarev, and G.A. Khasin: Protsessov (Sverdlovsk), 1979, vol. 7, pp. 40–47.

  23. 23.

    D.D. Van de Colf: Thesis, University of Witwatersrand Johannesburg, 1974.

  24. 24.

    H.Y. Shi and J.C. Wang: Iron Steel Vanadium Titan., 1987, pp. 56–60.

  25. 25.

    R. Desrosiers, F. Ajersch, and A. Grau: in 19th Annual Conference of Metallurgists, Halifax, Nova Scotia, August 1980, Canadian Institute of Mining and Metallurgy, Montreal, Canada, pp. 24–27.

  26. 26.

    26. J. Cameron, M. Etienne and A. Mitchell, Metallurgical Transactions, 1970, vol. 1, pp. 1839-1844.

    CAS  Article  Google Scholar 

  27. 27.

    27. S. Wang, G. Li, T. Lou and Z. Sui, Transactions of the Iron & Steel Institute of Japan, 2007, vol. 39, pp. 1116-1119.

    Article  Google Scholar 

  28. 28.

    28 K. Hu, X. W. Lv, S. P. Li, W. Lv, B. Song and K. Han, Metallurgical & Materials Transactions B, 2018, vol. 49, pp. 1963-1973.

    Article  Google Scholar 

  29. 29.

    29. P. Evseev, Avtomat. Svarka, 1967, vol. 20, pp. 42-45.

    CAS  Google Scholar 

  30. 30.

    30. S. Hara, Transactions of the Iron & Steel Institute of Japan, 2006, vol. 23, pp. 1053-1058.

    Article  Google Scholar 

  31. 31.

    31. Z. D. Pang, X. Lv, Z. M. Yan, D. Liang and J. Dang, Metallurgical and Materials Transactions B, 2018, vol. 49, pp 1322–1330.

    Google Scholar 

  32. 32.

    32. S. L. Schiefelbein and D. R. Sadoway, Metallurgical and Materials Transactions B, 1997, vol. 28, pp. 1141-1149.

    CAS  Article  Google Scholar 

  33. 33.

    33. X. Lu and F. Li, Transaction of Nonferrous Metals Socienty of China, 2000, vol. 10, pp. 437-439.

    CAS  Google Scholar 

  34. 34.

    34. M. Barati and K. S. Coley, Metallurgical & Materials Transactions B, 2006, vol. 37, pp. 41-49.

    CAS  Article  Google Scholar 

  35. 35.

    35 J. H. Liu, G. H. Zhang and Z. Wang, Metallurgical & Materials Transactions B, 2017, vol, 48, pp. 3359-3363.

    Article  Google Scholar 

  36. 36.

    36. P. C. Pistorius and C. Coetzee, Metallurgical & Materials Transactions B, 2003, vol. 34, pp. 581-588.

    CAS  Article  Google Scholar 

  37. 37.

    37. R. Bartholomew and D. Frankl, Physical Review, 1969, vol. 187, pp. 828-833.

    CAS  Article  Google Scholar 

  38. 38.

    38. R. G. Breckenridge and W. R. Hosler, Phys Rev, 1953, vol. 91, pp. 793-802.

    CAS  Article  Google Scholar 

  39. 39.

    39 J. Nowotny, T. Bak, M. K. Nowotny and L. R. Sheppard, Journal of Physical Chemistry C, 2014, vol. 112, pp. 590-601.

    Article  Google Scholar 

  40. 40.

    40. R N Blumenthal, J Baukus, W M Hirthe. Journal of the Electrochemical Society, 1967,vol. 2, pp. 172-176.

    Article  Google Scholar 

  41. 41.

    41. J. Yahia and H. Frederikse, Physical Review, 1961, vol. 123, pp. 1257.

    CAS  Article  Google Scholar 

  42. 42.

    N.A. Fried: Thesis, Massachusetts Institute of Technology, 1996.

  43. 43.

    43. Q. Jiao and N. J. Themelis, Metallurgical Transactions B, 1988, vol. 19, pp. 133-140.

    Article  Google Scholar 

  44. 44.

    44. M. Earle, Physical Review, 1942, vol. 61, pp. 56-62.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to the National Key R&D Program of China, for their support (No. 2018YFC1900500) and to the Graduate Science Research and Innovation Foundation of Chongqing, China for the Project support (Grant No. CYB19001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xuewei Lv or Wenzhou Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 10, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Lv, X., Yu, W. et al. Electric Conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for High-Titania Slag Smelting Process. Metall Mater Trans B 50, 2982–2992 (2019). https://doi.org/10.1007/s11663-019-01702-0

Download citation