Skip to main content
Log in

Low-Temperature Synthesis of VB2 Nanopowders by a Molten-Salt-Assisted Borothermal Reduction Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Vanadium diboride (VB2) powders with low oxygen content are prepared via a molten-salt-assisted borothermal reduction reaction at 1123 K to 1273 K (850 °C to 1000 °C) using V2O3 and boron powders as the raw materials. The effects of the amount of molten salt and reaction temperature on the phase transition and morphology of the final products are investigated. The results reveal that the addition of molten salt is beneficial for decreasing both the synthesis temperature and particle size of the final products. When the mass ratio of NaCl to reactants is 0.75:1, the VB2 powders prepared at 1173 K (900 °C) have a particle size lower than 100 nm. Too little or too high molten salt addition has a negative impact on the preparation of the VB2 powders. Furthermore, the reaction temperature has an important impact on the morphology and purity of the VB2 particles. An appropriate reaction temperature (1173 K (900 °C)) is beneficial for controlling the size of the VB2 particles in the order of nanoscale and improving the quality of the VB2 powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Monteverde and L. Scatteia: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1130-1138.

    Article  Google Scholar 

  2. X. Zhou, H. Zhang, C. Cheng, J. Gao, G. Xu, Y. Li and Y. Luo: Physica B, 2009, vol. 404, pp. 1527–1531.

    Article  Google Scholar 

  3. F. Ge, C. Chen, R. Shu, F. Meng, P. Li and F. Huang: Vacuum, 2017, vol. 135, pp. 66-72.

    Article  Google Scholar 

  4. H.X. Yang, Y.D. Wang, X.P. Ai and C.S. Cha: Electrochem. solid-state lett., 2004, vol. 7, pp. A212-A215.

    Article  Google Scholar 

  5. V. Zamora, A.L. Ortiz, F. Guiberteau, M. Nygren: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 271-276.

    Article  Google Scholar 

  6. L. Bai, S. Ni, H. Jin, J. He, Y. Ouyang and F. Yuan: Int. J. Appl. Ceram. Tec., 2018, vol. 15, pp. 508-513.

    Article  Google Scholar 

  7. M. Thompson, W. G. Fahrenholtz, and G. Hilmas: J. Am. Ceram. Soc., 2011, vol. 94, pp. 429-435.

    Article  Google Scholar 

  8. Y. Wang, X.Y. Guang, Y.L. Cao, X.P. Ai and H.X. Yang: J. Alloys. Compd., 2010, vol. 501, pp. L12-L14.

    Article  Google Scholar 

  9. S.A. Hassanzadeh-Tabrizi, D. Davoodi, A.A. Beykzadeh and S. Salahshour: Ceram. Int., 2016, vol. 42, pp. 1812-1816.

    Article  Google Scholar 

  10. L. Rao, E.G. Gillan and R.B. Kaner: J. Mater. Res., 1995, vol. 10, pp. 353.

    Article  Google Scholar 

  11. C.L. Yeh and H.J. Wang: J. Alloys. Compd., 2011, vol. 509, pp. 3257-3261.

    Article  Google Scholar 

  12. L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma and Y. Qian: Mater. Lett., 2004, vol. 58, pp. 2890-2892.

    Article  Google Scholar 

  13. C. Rhodes, J. Stuart, R. Lopez, X. Li, M. Waje, M. Mullings and S. Licht: J. Power Sources, 2013, vol. 239, pp. 244-252.

    Article  Google Scholar 

  14. Y.N. Wei, Z.X Huang, L.M. Zhou, and S.L. Ran: Int. J. Mater. Res., 2015, vol. 106, pp. 1206-1208.

    Article  Google Scholar 

  15. S.C. Zhang, W.G. Fahrenholtz and G.E. Hilmas: J. Am. Ceram. Soc., 2006, vol. 89, pp. 1544-1550.

    Article  Google Scholar 

  16. W.M. Guo, G.J. Zhang, Y. You, S.H. Wu and H.T. Lin: J. Am. Ceram. Soc., 2014, vol. 97, pp. 1359-1362.

    Article  Google Scholar 

  17. B. Zou, P. Shen, X. Cao and Q. Jiang: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 591-595.

    Article  Google Scholar 

  18. D.R. Stull and H. Prophet: JANAF Thermochemical Tables, U.S. Department of Commerce, Washington, 1985.

    Google Scholar 

  19. I. Barin: Thermochemical Data of Pure Substances, VCN, Weinheim, Germany, 1989.

    Google Scholar 

  20. H.Y. Qiu, W.M. Guo, J. Zou and G.J. Zhang: Powder technol., 2012, vol. 217, pp. 462-466.

    Article  Google Scholar 

  21. W.M. Guo and G.J. Zhang: J. Am. Ceram. Soc., 2011, vol. 94, pp. 3702-3705.

    Article  Google Scholar 

  22. Z. Liu, Y.N. Wei, X. Meng, T. Wei and S.L. Ran: Ceram. Int., 2017, vol. 43, pp. 1628-1631.

    Article  Google Scholar 

  23. L. Ma, J. Yu, X. Guo, Y. Zhang, Y. Feng, H. Zong and H. Gong: Ceram. Int., 2017, vol. 43, pp. 12975-12978.

    Article  Google Scholar 

  24. K. Bao, Y. Wen, M. Khangkhamano and S. Zhang: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2266-2272.

    Article  Google Scholar 

  25. M.J. Geselbracht, L.D. Noailles, L.T. Ngo, J.H. Pikul, R.I. Walton, E.S. Cowell, F. Millange and D. O’Hare: Chem. Mater., 2004, vol. 16, pp. 1153-1159.

    Article  Google Scholar 

  26. Z. Li, W.E. Lee and S. Zhang: J. Am. Chem. Soc., 2007, vol. 90, pp. 364-368.

    Google Scholar 

  27. Y.W. Wang, J.T. He, C.C. Liu, W.H. Chong and H.Y. Chen: Angew. Chem. Int. Ed., 2015, vol. 54, pp. 2022-2051.

    Article  Google Scholar 

  28. D. Seo, J.C. Park and H. Song: J. Am. Chem. Soc., 2006, vol. 128, pp. 14863-14870.

    Article  Google Scholar 

  29. X. Liu and S. Zhang: J Am Ceram Soc., 2008, vol. 91, pp. 667-670.

    Article  Google Scholar 

  30. D.D. Jayaseelan, S. Zhang, S. Hashimoto and W.E. Lee: J Eur Ceram Soc., 2007, vol. 27, pp. 4745-4749.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (FRF-GF-17-B41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YD., Zhang, GH., Wang, Y. et al. Low-Temperature Synthesis of VB2 Nanopowders by a Molten-Salt-Assisted Borothermal Reduction Process. Metall Mater Trans B 50, 1696–1703 (2019). https://doi.org/10.1007/s11663-019-01620-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01620-1

Navigation