Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 4, pp 1696–1703 | Cite as

Low-Temperature Synthesis of VB2 Nanopowders by a Molten-Salt-Assisted Borothermal Reduction Process

  • Yue-Dong Wu
  • Guo-Hua ZhangEmail author
  • Yu Wang
  • Rui Xu
Article
  • 35 Downloads

Abstract

Vanadium diboride (VB2) powders with low oxygen content are prepared via a molten-salt-assisted borothermal reduction reaction at 1123 K to 1273 K (850 °C to 1000 °C) using V2O3 and boron powders as the raw materials. The effects of the amount of molten salt and reaction temperature on the phase transition and morphology of the final products are investigated. The results reveal that the addition of molten salt is beneficial for decreasing both the synthesis temperature and particle size of the final products. When the mass ratio of NaCl to reactants is 0.75:1, the VB2 powders prepared at 1173 K (900 °C) have a particle size lower than 100 nm. Too little or too high molten salt addition has a negative impact on the preparation of the VB2 powders. Furthermore, the reaction temperature has an important impact on the morphology and purity of the VB2 particles. An appropriate reaction temperature (1173 K (900 °C)) is beneficial for controlling the size of the VB2 particles in the order of nanoscale and improving the quality of the VB2 powders.

Notes

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (FRF-GF-17-B41).

References

  1. 1.
    F. Monteverde and L. Scatteia: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1130-1138.CrossRefGoogle Scholar
  2. 2.
    X. Zhou, H. Zhang, C. Cheng, J. Gao, G. Xu, Y. Li and Y. Luo: Physica B, 2009, vol. 404, pp. 1527–1531.CrossRefGoogle Scholar
  3. 3.
    F. Ge, C. Chen, R. Shu, F. Meng, P. Li and F. Huang: Vacuum, 2017, vol. 135, pp. 66-72.CrossRefGoogle Scholar
  4. 4.
    H.X. Yang, Y.D. Wang, X.P. Ai and C.S. Cha: Electrochem. solid-state lett., 2004, vol. 7, pp. A212-A215.CrossRefGoogle Scholar
  5. 5.
    V. Zamora, A.L. Ortiz, F. Guiberteau, M. Nygren: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 271-276.CrossRefGoogle Scholar
  6. 6.
    L. Bai, S. Ni, H. Jin, J. He, Y. Ouyang and F. Yuan: Int. J. Appl. Ceram. Tec., 2018, vol. 15, pp. 508-513.CrossRefGoogle Scholar
  7. 7.
    M. Thompson, W. G. Fahrenholtz, and G. Hilmas: J. Am. Ceram. Soc., 2011, vol. 94, pp. 429-435.CrossRefGoogle Scholar
  8. 8.
    Y. Wang, X.Y. Guang, Y.L. Cao, X.P. Ai and H.X. Yang: J. Alloys. Compd., 2010, vol. 501, pp. L12-L14.CrossRefGoogle Scholar
  9. 9.
    S.A. Hassanzadeh-Tabrizi, D. Davoodi, A.A. Beykzadeh and S. Salahshour: Ceram. Int., 2016, vol. 42, pp. 1812-1816.CrossRefGoogle Scholar
  10. 10.
    L. Rao, E.G. Gillan and R.B. Kaner: J. Mater. Res., 1995, vol. 10, pp. 353.CrossRefGoogle Scholar
  11. 11.
    C.L. Yeh and H.J. Wang: J. Alloys. Compd., 2011, vol. 509, pp. 3257-3261.CrossRefGoogle Scholar
  12. 12.
    L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma and Y. Qian: Mater. Lett., 2004, vol. 58, pp. 2890-2892.CrossRefGoogle Scholar
  13. 13.
    C. Rhodes, J. Stuart, R. Lopez, X. Li, M. Waje, M. Mullings and S. Licht: J. Power Sources, 2013, vol. 239, pp. 244-252.CrossRefGoogle Scholar
  14. 14.
    Y.N. Wei, Z.X Huang, L.M. Zhou, and S.L. Ran: Int. J. Mater. Res., 2015, vol. 106, pp. 1206-1208.CrossRefGoogle Scholar
  15. 15.
    S.C. Zhang, W.G. Fahrenholtz and G.E. Hilmas: J. Am. Ceram. Soc., 2006, vol. 89, pp. 1544-1550.CrossRefGoogle Scholar
  16. 16.
    W.M. Guo, G.J. Zhang, Y. You, S.H. Wu and H.T. Lin: J. Am. Ceram. Soc., 2014, vol. 97, pp. 1359-1362.CrossRefGoogle Scholar
  17. 17.
    B. Zou, P. Shen, X. Cao and Q. Jiang: Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 591-595.CrossRefGoogle Scholar
  18. 18.
    D.R. Stull and H. Prophet: JANAF Thermochemical Tables, U.S. Department of Commerce, Washington, 1985.Google Scholar
  19. 19.
    I. Barin: Thermochemical Data of Pure Substances, VCN, Weinheim, Germany, 1989.Google Scholar
  20. 20.
    H.Y. Qiu, W.M. Guo, J. Zou and G.J. Zhang: Powder technol., 2012, vol. 217, pp. 462-466.CrossRefGoogle Scholar
  21. 21.
    W.M. Guo and G.J. Zhang: J. Am. Ceram. Soc., 2011, vol. 94, pp. 3702-3705.CrossRefGoogle Scholar
  22. 22.
    Z. Liu, Y.N. Wei, X. Meng, T. Wei and S.L. Ran: Ceram. Int., 2017, vol. 43, pp. 1628-1631.CrossRefGoogle Scholar
  23. 23.
    L. Ma, J. Yu, X. Guo, Y. Zhang, Y. Feng, H. Zong and H. Gong: Ceram. Int., 2017, vol. 43, pp. 12975-12978.CrossRefGoogle Scholar
  24. 24.
    K. Bao, Y. Wen, M. Khangkhamano and S. Zhang: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2266-2272.CrossRefGoogle Scholar
  25. 25.
    M.J. Geselbracht, L.D. Noailles, L.T. Ngo, J.H. Pikul, R.I. Walton, E.S. Cowell, F. Millange and D. O’Hare: Chem. Mater., 2004, vol. 16, pp. 1153-1159.CrossRefGoogle Scholar
  26. 26.
    Z. Li, W.E. Lee and S. Zhang: J. Am. Chem. Soc., 2007, vol. 90, pp. 364-368.Google Scholar
  27. 27.
    Y.W. Wang, J.T. He, C.C. Liu, W.H. Chong and H.Y. Chen: Angew. Chem. Int. Ed., 2015, vol. 54, pp. 2022-2051.CrossRefGoogle Scholar
  28. 28.
    D. Seo, J.C. Park and H. Song: J. Am. Chem. Soc., 2006, vol. 128, pp. 14863-14870.CrossRefGoogle Scholar
  29. 29.
    X. Liu and S. Zhang: J Am Ceram Soc., 2008, vol. 91, pp. 667-670.CrossRefGoogle Scholar
  30. 30.
    D.D. Jayaseelan, S. Zhang, S. Hashimoto and W.E. Lee: J Eur Ceram Soc., 2007, vol. 27, pp. 4745-4749.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations