Skip to main content
Log in

Experimental and Mathematical Simulation Study on the Granulation of a Modified Basic Oxygen Furnace Steel Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Basic oxygen furnace (BOF) steel slag is a major waste of the steelmaking industry. Utilization of BOF slag contributes to the sustainability of the steel industry by alleviating its environmental impact. Vitrification during cooling is an effective method to promote the cementitious activity of slags with the aim to apply slags in high value-added applications. In the present study, an Al2O3- and SiO2-modified BOF slag was water granulated at a pilot scale. The amorphous and mineral fractions were measured quantitatively. The critical cooling rate to vitrify the modified slag was calculated through the Time-Temperature-Transformation diagrams constructed using in situ confocal scanning laser microscopy. To provide an insight into the crystallization behavior during the granulation process, a mathematical model was developed. The model was validated by comparing the amorphous fraction obtained from experiments with that from simulation. Temperature profiles of the slag particles with varied sizes were calculated with the aid of COMSOL Multiphysics software. The effect of particle size on the vitrified fraction was discussed in detail and the temperature gradient from surface to center of the particle was identified. The results provide novel fundamental understanding of the vitrification process regarding to the slag valorization, which will help the industrial implementation of granulation for pollution remediation and other engineered environmental systems such as chemical industry and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1 D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. Shepker, and M.A. Zak: Environ. Sci. Technol., 2000, vol. 34, pp. 1576–82.

    Article  Google Scholar 

  2. 2 E.T. Turkdogan and R.J. Fruehan: in Fundamentals of iron and steelmaking, 11th edn., Association of Iron and Steel Engineers, Pittsburgh, 1998, p. 160.

    Google Scholar 

  3. www.euroslag.com. Accessed 23 May 2018.

  4. 4 H. Motz and J. Geiseler: Waste Manag., 2001, vol. 21, pp. 285–93.

    Article  Google Scholar 

  5. 5 A.S. Reddy, R.K. Pradhan, and S. Chandra: Int. J. Miner. Process., 2006, vol. 79, pp. 98–105.

    Article  Google Scholar 

  6. 6 H. Guo, S. Yin, Q. Yu, X. Yang, H. Huang, Y. Yang, and F. Gao: Resour. Conserv. Recycl., 2018, vol. 129, pp. 209–18.

    Article  Google Scholar 

  7. 7 T. Koh, S.W. Moon, H. Jung, Y. Jeong, and S. Pyo: Sustain., 2018, vol. 10, pp 1-12.

    Article  Google Scholar 

  8. 8 J.N. Murphy, T.R. Meadowcroft, and P.V. Barr: Can. Metall. Q., 1997, vol. 36, pp. 315–31.

    Article  Google Scholar 

  9. 9 G.Z. Ye, E. Burstr, M. Kuhn, and J. Piret: Scand. J. Metall., 2003, vol. 32, pp. 7–14.

    Article  Google Scholar 

  10. 10 R.M. Santos, D. Ling, A. Sarvaramini, M.X. Guo, J. Elsen, F. Larachi, G. Beaudoin, B. Blanpain, and T. Van Gerven: Chem. Eng. J., 2012, vol. 203, pp. 239–50.

    Article  Google Scholar 

  11. 11 S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87–94.

    Article  Google Scholar 

  12. J.A. Duffy, M.D. Ingram, and L.D. Sommerville (1978) J. Chem. Soc. Faraday Trans. 1, vol. 74, pp. 1410–9.

    Article  Google Scholar 

  13. 13 C. Liu, S. Huang, P. Wollants, B. Blanpain, and M. Guo: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1602–1612.

    Article  Google Scholar 

  14. 14 B. Deo, J. Halder, B. Snoeijer, A. Overbosch, and R. Boom: Ironmak. Steelmak., 2005, vol. 32, pp. 54–60.

    Article  Google Scholar 

  15. C.W. Liu, M.X. Guo, L. Pandelaers, B. Blanpain, and S.G. Huang: in Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts (MOLTEN16), 2016, pp. 1185–90.

  16. 16 V.Z. Serjun, B. Mirtic, and A. Mladenovic: Mater. Tehnol., 2013, vol. 47, pp. 543–50.

    Google Scholar 

  17. 17 D. Ionescu, T.R. Meadowcroft, and P.V. Barr: Adv. Cem. Res., 2001, vol. 13, pp. 21–30.

    Article  Google Scholar 

  18. 18 C.W. Liu, S.G. Huang, B. Blanpain, and M.X. Guo: Metall. Mater. Trans. B, 2019, vol. 50, pp. 271–81.

    Article  Google Scholar 

  19. 19 L. Kriskova, Y. Pontikes, L. Pandelaers, Ö. Cizer, P.T. Jones, K. Van Balen, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1173–84.

    Article  Google Scholar 

  20. J.B. FerreiraNeto, J.O.G. Faria, C. Fredericci, F. Chotoli, A.N.L. Silva, B.B. Ferraro, T.R. Ribeiro, A. Malynowskyj, V.A. Quarcioni, and A.A. Lotto: J. Sustain. Metall., 2016, vol. 2, pp. 13–27.

    Article  Google Scholar 

  21. 21 J.J. Liu, G. Chen, P.C. Yan, B. Blanpain, N. Moelans, and M.X. Guo: J. Cryst. Growth, 2014, vol. 402, pp. 1–8.

    Article  Google Scholar 

  22. 22 J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.

    Article  Google Scholar 

  23. D.R. Uhlmann and P.I.K. Onoratoo: in 10 th Proc. Lunar Planet. Sci. Conf., 1979, pp. 375–81.

  24. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, illustrate, John Wiley & Sons, 2007.

  25. K.C. Mills: The Estimation of Slag Properties, 2011.

  26. 26 R. Eriksson and S. Seetharaman: Metall. Mater. Trans. B, 2004, vol. 35, pp. 461–9.

    Article  Google Scholar 

  27. 27 K. Youngjo and M. Kazuki: ISIJ Int., 2006, vol. 46, pp. 420–6.

    Article  Google Scholar 

  28. 28 Y. Kang, K. Nomura, K. Tokumitsu, and H. Tobo: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1420–1426.

    Article  Google Scholar 

  29. M. Tossavainen, F. Engstrom, Q. Yang, N. Menad, M. LidstromLarsson, and B. Bjorkman: Waste Manag, 2007, vol. 27, pp. 1335–44.

    Article  Google Scholar 

  30. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Clarendon Press, 1959.

  31. 31 I.A. Neacşu, B. Scheichl, H. Rojacz, G. Vorlaufer, M. Varga, H. Schmid, and J. Heiss: Steel Res. Int., 2016, vol. 87, pp. 720–32.

    Article  Google Scholar 

  32. 32 D. Durinck, F. Engström, S. Arnout, J. Heulens, P.T. Jones, B. Björkman, B. Blanpain, and P. Wollants: Resour. Conserv. Recycl., 2008, vol. 52, pp. 1121–31.

    Article  Google Scholar 

  33. 33 D. Turnbull: Contemp. Phys., 1969, vol. 10, pp. 473–88.

    Article  Google Scholar 

  34. 34 H. Yinnon and D.R. Uhlmann: J. Non. Cryst. Solids, 1981, vol. 44, pp. 37–55.

    Article  Google Scholar 

  35. D.R. Uhlmann, H. Yinnon, and C.Y. Fang: in Lunar and Planetary Science Conference Proceedings, vol. 12B, 1982, pp. 281–8.

  36. 36 P. Rocabois, J.N. Pontoire, J. Lehmann, and H. Gaye: J. Non. Cryst. Solids, 2001, vol. 282, pp. 98–109.

    Article  Google Scholar 

  37. 37 Y.Q. Sun, H.W. Shen, H. Wang, X.D. Wang, and Z.T. Zhang: Energy, 2014, vol. 76, pp. 761–7.

    Article  Google Scholar 

  38. 38 L.J. Zhou, W.L. Wang, F.J. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2011, vol. 43, pp. 354–62.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Innovation by Science and Technology (IWT Grant No. 140514). Chunwei Liu gratefully acknowledges the support of the China Scholarship Council (CSC, No. 201306080002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 28, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Lopez Gonzalez, P.L., Huang, S. et al. Experimental and Mathematical Simulation Study on the Granulation of a Modified Basic Oxygen Furnace Steel Slag. Metall Mater Trans B 50, 1260–1268 (2019). https://doi.org/10.1007/s11663-019-01543-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01543-x

Navigation