Skip to main content
Log in

Wetting and Erosion of ZrO2-Graphite Refractory by CaO-SiO2 and CaO-Al2O3-Based Mold Slags for Submerged Entry Nozzle

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To moderate the erosion in a slag-line zone and extend the service life of a submerged entry nozzle during continuous casting of high-Mn and high-Al steel, the current study developed a low-reaction CaO-Al2O3-based slag with lower SiO2 and higher Al2O3 contents than that of conventional CaO-SiO2-based slag. The static sessile drop technique and dynamic rotating cylinder method were utilized to investigate the erosion behavior of ZrO2-graphite refractory by the above slags. The main results indicated that silicate-based slag could wet the ZrO2-graphite substrate completely, while the aluminate-based slag spread rapidly in the first 20 minutes, and then a slag drop with an unchanged profile formed on the substrate. The equilibrium contact angles with the substrate at 1623 K were 0 and 79 deg for the CaO-SiO2 and CaO-Al2O3 based slags, respectively. The comparison of the influences of the rotating speed and the temperature revealed that the decrease of erosion rate could be realized by the developed slag. An examination of ZrO2-saturation limit also indicated that the low-reaction slag could dissolve much more ZrO2 oxidation, accompanied by a less-negative effect on the viscosity of the molten slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] L.M. Aksel’rod: Refract. Ind. Ceram., 1996, vol. 37, pp. 207-10.

    Article  Google Scholar 

  2. [2] Y. Nakamura, T. Ando, K. Kurata, and M. Ikeda: Trans. ISIJ, 1986, vol. 26, pp. 1052-58.

    Article  Google Scholar 

  3. K.C. Mills, Carl-Åke Däcker: The Casting Powders Book, Springer Nature, 2017.

    Book  Google Scholar 

  4. [4] A.F. Dick, X. Yu, R.J. Pomfret, and K.S. Coley: ISIJ Int., 1997, vol. 37, pp. 102-08.

    Article  Google Scholar 

  5. [5] Y. Hemberger, C. Berthold, and K.G. Nickel: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 2859-66.

    Article  Google Scholar 

  6. [6] H. Kyoden and Y. Namba: Taikabutsu Overseas, 1984, vol. 36, pp. 218.

    Google Scholar 

  7. [8] M. Chen, C.Y. Lu, J.K. Yu: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 4633-38.

    Article  Google Scholar 

  8. [9] J.H. Park: Calphad, 2007, vol. 31, pp. 149-54.

    Article  Google Scholar 

  9. [10] J. Szczerba, Z. Pędzich: Ceram. Int., 2010, vol.36, pp. 535-47.

    Article  Google Scholar 

  10. [11] J.L. Klug, M.M. Pereira, E.L. Nohara, S.L. Freitas, G.T. Ferreira, and D. Jung: Ironmaking Steelmaking, 2016, vol. 43, pp. 559-63.

    Article  Google Scholar 

  11. [12] F. Hauck and J. Potschke: Archiv Fur Das Eisenhuttenwesen, 1982, vol. 53, pp. 133-38.

    Article  Google Scholar 

  12. [13] T.M. Ye, W.D. Yi, W.J. Xiao, G.P. Wang, and Y.H. Pan: J. Iron Steel Res. Int., 2008, vol. 15, pp. 669-74.

    Google Scholar 

  13. [14] J. Zhang, C.Q. Zhang, L. Wang, M.R. Han, and W.S. Hwang: Metallurgist, 2017, vol. 60, pp. 916-22.

    Article  Google Scholar 

  14. [15] A.H. Bui, S.C. Park, I.S. Chung, and H.G. Lee: Met. Mater. Int., 2006, vol. 12, pp. 435-40.

    Article  Google Scholar 

  15. [16] F. Cirilli, A.D. Donato, U. Martini, P. Miceli, P. Guillo, J. Simoes, and Y.J. Song: Metall. Ital., 2008, vol. 100, pp. 43-50.

    Google Scholar 

  16. [17] M.O. Suk and J.H. Park: J. Am. Ceram. Soc., 2009, vol. 92, pp. 717-23.

    Article  Google Scholar 

  17. [18] A. Kumar, R. Khanna, J. Spink, and V. Sahajwalla: Steel Res. Int., 2014, vol. 85, pp. 1185-93.

    Article  Google Scholar 

  18. H. Harmuth, V. Kircher, N. Kolbl, M. Antczak, and G. Xia: Proc. Unified Int. Tech. Conf. Refract., 2013, pp. 801–06.

  19. [20] W.L. Wang, B.X. Lu, and D. Xiao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 384-89.

    Article  Google Scholar 

  20. [21] G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1773-84.

    Article  Google Scholar 

  21. X.B. Zhang, Y. Ren, L.F. Zhang, and W. Yang: Metall. Mater. Trans. B, 2018, https://doi.org/10.1007/s11663-018-1366-9.

    Google Scholar 

  22. G. Skoczylas: 79th Steelmak. Conf., 1996, pp. 269–75.

  23. [24] Q. Liu, G.H. Wen, J. Li, X. Fu, P. Tang, and W. Li: Ironmaking Steelmaking, 2014, vol. 41, pp. 292-97.

    Article  Google Scholar 

  24. [25] J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon: ISIJ Int., 2013, vol. 53, pp. 62-70.

    Article  Google Scholar 

  25. [26] G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol. 45, pp. 86-95.

    Article  Google Scholar 

  26. [27] H. Zhao, W.L. Wang, L.J. Zhou, B.X. Lu, and Y.B. Kang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1510-19.

    Article  Google Scholar 

  27. [28] T. Wu, Q. Wang, S.P. He, J.F. Xu, X. Long, and Y.J. Lu: Steel Res. Int., 2012, vol. 83, pp. 1194-202.

    Article  Google Scholar 

  28. [29] K.C. Mills: ISIJ Int., 2016, vol. 56, pp. 1-13.

    Article  Google Scholar 

  29. [30] X. Long, S.P. He, Q. Wang, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1652-58.

    Article  Google Scholar 

  30. L.L. Zhu, Q. Wang, Q.Q. Wang, S.D. Zhang, and S.P. He: J. Am. Ceram. Soc., 2018, https://doi.org/10.1111/jace.16085.

    Google Scholar 

  31. [32] S.D. Zhang, Q.Q. Wang, S.P. He, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2038-49.

    Article  Google Scholar 

  32. [33] K. Mukai, H. Iwasaki, T. Eguchi, S. Iizuka, J.M. Toguri: Taikabutsu (Refractories), 1990, vol.42, pp. 710-19.

    Google Scholar 

  33. P. Shen, L.F. Zhang, Yi Wang, S. Sridhar, and Q.Q. Wang: Ceram. Int., 2016, vol. 42, pp. 16040-48.

    Article  Google Scholar 

  34. [35] M.R. Yang, X.W. Lv, R.R. Wei, and C.G. Bai: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2667-80.

    Article  Google Scholar 

  35. [36] M.R. Yang, X.W. Lv, R.R. Wei, J. Xu, and C.G. Bai: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1331-45.

    Article  Google Scholar 

  36. A.R. Cooper: Proc. Educ. Symp. Refract. Sagging Environ. Ceram. Eng. Sci. Proc., 1981, pp. 1063–89.

  37. A.W. Cramb and I. Jimbo: Trans. ISS, 1989, pp. 43–55.

  38. [39] T. Imaoka and Y. Iwamoto: Shinagawa Technical Report, 2012, vol. 55, pp. 21-30.

    Google Scholar 

  39. [40] C.C. Miller: Proc. R. Soc. London. Ser. A, 1924, vol. 106, pp. 724-29.

    Article  Google Scholar 

  40. [41] P. Rocabois, J. Lehmann, H. Gaye, and J.N. Pontoire: J. Non-Cryst. Solids, 2001, vol. 282, pp. 98-109.

    Article  Google Scholar 

  41. [42] Z.T. Zhang, G.H. Wen, and Y.Y. Zhang: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 150-58.

    Article  Google Scholar 

  42. R.J. Phillips, W.F. Salem, W.R. Emling, and H.D. Baker: 73rd Steelmak. Conf. Proc., 1990, pp. 247–51.

  43. D.W. Bruce and N.S. Hunter: Proc. 2nd Eur. Conf. Contin. Cast., 1994, p. 156.

  44. [45] T. Mukongo, P.C. Pistorius, and A.M. Garbers-Craig: Ironmaking Steelmaking, 2004, vol. 31, pp. 135-43.

    Article  Google Scholar 

  45. [46] Z. Wang, Q.F. Shu, H.M. Hou, and K.C. Chou: Ironmaking Steelmaking, 2012, vol. 39, pp. 210-15.

    Article  Google Scholar 

  46. [47] A.B. Fox, K.C. Mills, D. Lever, C. Bezerra, C. Valadares, I. Unamuno, J.J. Laraudogoitia, and J. Gisby: ISIJ Int., 2005, vol. 45, pp. 1051-58.

    Article  Google Scholar 

  47. [48] H. Hashimoto, T. Watanabe, and K. Nagata: CAMP-ISIJ, 2004, vol. 17, pp. 849.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the National Natural Science Foundation of China (Grant Nos. 51804057, U1660204, and 51874057), and the Fundamental Research Funds for the Central Universities in China (Grant No. 2018CDXYCL0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yuan, H., Gan, M. et al. Wetting and Erosion of ZrO2-Graphite Refractory by CaO-SiO2 and CaO-Al2O3-Based Mold Slags for Submerged Entry Nozzle. Metall Mater Trans B 50, 1407–1416 (2019). https://doi.org/10.1007/s11663-019-01541-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01541-z

Navigation