Skip to main content

Advertisement

Log in

Mechanisms of Hydrogen-Assisted Magnesiothermic Reduction of TiO2

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Direct reduction of TiO2 powder has been attempted for decades by researchers in an effort to decrease titanium (Ti) metal production costs. The main objective has been to avoid energy-intensive steps involved in production of primary Ti by the Kroll process. The emerging hydrogen-assisted magnesiothermic reduction process, which uses Mg to directly reduce TiO2 powder under a H2 atmosphere, has been shown to have the potential to compete directly with the Kroll process. The present studies represent an effort to understand the reduction reaction mechanisms of this process. Phase transformations and the reaction pathways are examined by SEM/EDX analysis of partially reduced powder cross-sectional, X-ray diffraction, and other analytical techniques. The results show important morphological changes, the prominent intermediate and final phases under the H2 atmosphere, as well as the local deposition behavior of the MgO byproduct. The effect of the specific surface areas of the initial particles is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. [31]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ASM: in Titanium: A Technical Guide, 2nd edn., 2000, pp. 5–11.

  2. R.R. Boyer: Jom, 2010, vol. 62, pp. 21–4.

    Article  CAS  Google Scholar 

  3. J. Gambogi and S.J. Gerdemann: Titanium Metal: Extraction to Application, 1999.

  4. US Patent 2,205,854: 1940.

  5. D.J. Fray: Int. Mater. Rev., 2008, vol. 53, pp. 317–25.

    Article  CAS  Google Scholar 

  6. Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, and M. Free: Int. Mater. Rev., 2017, pp. 1–53.

  7. E.H. Kraft: Summary of Emerging Titanium Cost Reduction Technologies, EHK Technologies for DOE/ORNL, Vancouver, WA, 2004.

    Google Scholar 

  8. Y. Zhang, Z.Z. Fang, P. Sun, S. Zheng, Y. Xia, and M. Free: JOM, 2017, vol. 69, pp. 1861–1868.

    Article  CAS  Google Scholar 

  9. G.Z. Chen, D.J. Fray, and T.W. Farthing: Lett. to Nat., 2000, vol. 407, pp. 361–4.

    Article  CAS  Google Scholar 

  10. D. Hu, A. Dolganov, M. Ma, B. Bhattacharya, M.T. Bishop, and G.Z. Chen: JOM, 2018, vol. 70, pp. 129–37.

    Article  CAS  Google Scholar 

  11. I. Mellor, L. Grainger, R. Kartik, J. Deane, M. Conti, G. Doughty, and D. Vaughan: in Titanium Powder Production Via the Metalysis Process, 2015, pp. 51–67.

  12. D.T.L. Alexander, C. Schwandt, and D.J. Fray: Acta Mater., 2006, vol. 54, pp. 2933–44.

    Article  CAS  Google Scholar 

  13. C. Schwandt and D.J. Fray: Electrochim. Acta, 2005, vol. 51, pp. 66–76.

    Article  CAS  Google Scholar 

  14. L.L. Benson, I. Mellor, and M. Jackson: J. Mater. Sci., 2016, vol. 51, pp. 4250–61.

    Article  CAS  Google Scholar 

  15. M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, and G.Z. Chen: J. Alloys Compd., 2006, vol. 420, pp. 37–45.

    Article  CAS  Google Scholar 

  16. G. Crowley: Adv. Mater. Process., 2003, vol. 161, pp. 25–7.

    CAS  Google Scholar 

  17. W. Chen, Y. Yamamoto, and W.H. Peter: Key Eng. Mater., 2010, vol. 436, pp. 123–30.

    Article  CAS  Google Scholar 

  18. X. Xu, P. Nash, and D. Mangabhai: JOM, 2017, vol. 69, pp. 770–5.

    Article  CAS  Google Scholar 

  19. F.H. Froes: in A Historical Perspective of Titanium Powder Metallurgy, M. Qian and F.H. Froes, eds., Elsevier, Amsterdam, 2015, pp. 1–609.

  20. F.H. Froes: JOM, 1998, vol. 9, pp. 41–3.

    Article  Google Scholar 

  21. P. Waldner and G. Eriksson: Calphad Comput. Coupling Phase Diagrams Thermochem., 1999, vol. 23, pp. 189–218.

    Article  CAS  Google Scholar 

  22. B.A. Borok, M.K. Rybal’chenko, I.A. Lavrent’ev, R.P. Shchegoleva, L.S. Golubeva, and V.F. Volobuev: Sov. Powder Metall. Met. Ceram., 1973, vol. 12, pp. 102–07.

    Article  Google Scholar 

  23. T.H. Okabe, T. Oishi, and K. Ono: J. Alloys Compd., 1992, vol. 184, pp. 43–56.

    Article  CAS  Google Scholar 

  24. T.H. Okabe, T. Oda, and Y. Mitsuda: J. Alloys Compd., 2004, vol. 364, pp. 156–63.

    Article  CAS  Google Scholar 

  25. H. Zheng, H. Ito, and T.H. Okabe: Mater. Trans., 2007, vol. 48, pp. 2244–51.

    Article  CAS  Google Scholar 

  26. T. Kikuchi, M. Yoshida, S. Matsuura, S. Natsui, E. Tsuji, H. Habazaki, and R.O. Suzuki: J. Phys. Chem. Solids, 2014, vol. 75, pp. 1041–8.

    Article  CAS  Google Scholar 

  27. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free, and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517–27.

    Article  CAS  Google Scholar 

  28. Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou, and Z. Huang: J. Am. Chem. Soc., 2016, vol. 138, pp. 6916–9.

    Article  CAS  Google Scholar 

  29. K.T. Jacob and S. Gupta: J. Met., 2009, vol. 61, pp. 56–9.

    CAS  Google Scholar 

  30. K. Choi, H. Choi, and I. Sohn: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 922–32.

    Article  Google Scholar 

  31. Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B. Van Devener, M. Free, H. Lefler, and S. Zheng: Chem. Eng. J., 2017, vol. 308, pp. 299–310.

    Article  CAS  Google Scholar 

  32. ASTM International: Standard Specification for Titanium Sponge: B299-13, 2015.

  33. Y. Zhang, Z.Z. Fang, P. Sun, Y. Xia, M. Free, Z. Huang, H. Lefler, T. Zhang, and J. Guo: Chem. Eng. J., 2017, vol. 327, pp. 169–82.

    Article  CAS  Google Scholar 

  34. Y. Xia, Z.Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and Z. Huang: Mater. Trans., 2016, vol. 58, pp. 355–60.

    Article  Google Scholar 

  35. S. Andersson, B. Collen, G. Kruuse, U. Kuylenstierna, A. Magneli, H. Pestmalis, and S. Asbrink: Acta Chem. Scand. II, 1957, vol. 11, pp. 1653–7.

    Article  CAS  Google Scholar 

  36. B. Xu, H.Y. Sohn, Y. Mohassab, and Y. Lan: RSC Adv., 2016, vol. 6, pp. 79706–22.

    Article  CAS  Google Scholar 

  37. Y. Le Page and P. Strobel: J. Solid State Chem., 1982, vol. 44, pp. 273–81.

    Article  Google Scholar 

  38. A.C.M. Padilha, H. Raebiger, A.R. Rocha, and G.M. Dalpian: Sci. Reports - Nat., 2016, vol. 6, pp. 1–5.

    Article  Google Scholar 

  39. R. Bhagat, D. Dye, S.L. Raghunathan, R.J. Talling, D. Inman, B.K. Jackson, K.K. Rao, and R.J. Dashwood: Acta Mater., 2010, vol. 58, pp. 5057–62.

    Article  CAS  Google Scholar 

  40. K. Sreedhar and N.R. Pavaskar: Mater. Lett., 2002, vol. 53, pp. 452–5.

    Article  CAS  Google Scholar 

  41. G. Yamaguchi and T. Tokuda: Bull. Chem. Soc. Jpn., 1967, vol. 40, pp. 843–51.

    Article  CAS  Google Scholar 

  42. Y. Suzuki and Y. Shinoda: Sci. Technol. Adv. Mater., 2011, vol. 12, pp. 0–6.

    Article  Google Scholar 

  43. B.A. Wechsler and R.B. Von Dreele: Acta Cryst., 1989, vol. B45, pp. 542–9.

    Article  CAS  Google Scholar 

  44. M.S.R. Bolívar and P.B. Friedrich: in Procedings of EMC, 2009, pp. 1–17.

  45. A. International: Phase Diagrams of Binary Titanium Alloys, Metals Park, 1987.

Download references

Acknowledgments

This work was financially supported by the U.S. Department of Energy (DOE), Advanced Research Projects Agency-Energy (ARPA-E), under contract number DE-AR0000420. The authors would also like to thank the corporate partners on the project, and the resources of the University of Utah. Additionally, a special thanks is extended to Material Data System (MDI) for their extension of an academic loan of Jade 2010 for XRD analysis, as well as KS Analytical Systems for helping to facilitate this arrangement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Zak Fang or Ying Zhang.

Additional information

Manuscript submitted December 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefler, H., Fang, Z.Z., Zhang, Y. et al. Mechanisms of Hydrogen-Assisted Magnesiothermic Reduction of TiO2. Metall Mater Trans B 49, 2998–3006 (2018). https://doi.org/10.1007/s11663-018-1399-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1399-0

Keywords

Navigation