Skip to main content
Log in

Understanding of Void Formation in Cu/Sn-Sn/Cu System During Transient Liquid Phase Bonding Process Through Diffusion Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Transient Liquid Phase (TPL) bounding of Sn foil sandwiched between two Cu foils involves, in the temperature range above the melting point of Sn (232 °C) and below 350 °C, the formation and the growth of two intermetallic compounds (IMCs) Cu6Sn5 and Cu3Sn and mostly unintended micro-pores. The present study aims to analyze the mechanism of void development during the soldering process through an experimental and modeling approach of diffusion-controlled IMC transformation. This modeling couples the diffusion process and the interface motion with the volume shrinkage induced by the difference of partial molar volumes of atoms between each phase. We also consider two types of inter-diffusion transports: (i) inter-diffusion based on the exchange of Cu and Sn atoms and (ii) inter-diffusion of Sn atoms with vacancies allowing Kirkendall void formation. The simulations of IMC growth performed correspond to a sequence of planar phase layers, where the distinctive scallop morphology of the Cu6Sn5 layer is described through an analytical function allowing to quantify the grain boundary diffusion pathway. We take into account of the volume diffusion mechanism for Cu3Sn intermetallic. For Cu6Sn5 intermetallic two mechanisms are considered, volume diffusion and grain boundary diffusion, limited by grain growth. The simulations of IMC growth kinetics, for different transport scenarios, are compared to the experimental evolving morphologies to determine the most likely mechanism of micro-void formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Beckedahl, Power Electron. Europe, 2011, 5, 23 http://www.power-mag.com/pdf/issuearchive/47.pdf

  2. J.F. Li, P.A. Agyakwa, C.M. Johnson, Acta Mater., 2011, 59, 1198-211

    Article  CAS  Google Scholar 

  3. T.B. Massalski, Binary alloy phase diagrams. (ASM Int. Materials Park, Ohio, 1990), pp. 1481-83

    Google Scholar 

  4. S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, Intermetallics, 2013, 34, 142-47

    Article  Google Scholar 

  5. C. Flötgen, M. Pawlak, E. Pabo, Microsyst. Technol., 2014, 20, 653-62

    Article  Google Scholar 

  6. W.-L. Chui, C.-M. Liu, Y.-S. Haung, C. Chen, Appl. Phys. Lett., 2014, 104, 171905

    Article  Google Scholar 

  7. D. Ma, W.D. Wang, S.K. Lahiri, J. Appl. Phys., 2002, 91, 3312-17

    Article  CAS  Google Scholar 

  8. N.S. Bosco, F.W. Zok, Acta Mater., 2004, 52, 2965-72

    Article  CAS  Google Scholar 

  9. M.S. Park, R. Arróyave, Acta Mater., 2012, 60, 923-34

    Article  CAS  Google Scholar 

  10. M.S. Park, S.L. Gibbons, R. Arróyave, Acta Mater., 2012, 60, 6278-6287

    Article  CAS  Google Scholar 

  11. M.S. Park, S.L. Gibbons, R. Arróyave, Microelectron. Reliab., 2014, 54, 1401-11

    Article  CAS  Google Scholar 

  12. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, Mater. Sc. Eng. A, 2017, 680, 221-231

    Article  CAS  Google Scholar 

  13. H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, C.R. Kao, IEEE Trans. Device Mater. Reliab., 2012, 12, 233-240

    Article  CAS  Google Scholar 

  14. Z. Mei, A.J. Sunwoo, J.W. Morris, Metall. Trans. A, 1992, 23, 857-864

    Article  Google Scholar 

  15. E. Kirkendall, Trans. AIME, 1947, 147, 104-110

    Google Scholar 

  16. F. Gao, J. Qu, Mater. Lett., 2012, 73, 92–94

    Article  CAS  Google Scholar 

  17. M. O. G. Vakanas, N. Moelans, M. Kajihara, W. Zhang, Microelectron. Eng., 2014, 120, 133-137

    Article  Google Scholar 

  18. A. Paul, C. Ghosh, W.J. Boettinger, Metall. Mater. Trans. A, 2011, 42A, 952-63

    Article  Google Scholar 

  19. K.N. Tu, R.D. Thompson, Acta Metall.,1982, 30, 947-952

    Article  CAS  Google Scholar 

  20. S. Kumar, C.A. Handwerker, M.A. Dayananda, J. Phase Equilib. Diff., 2011, 32, 309-319

    Article  CAS  Google Scholar 

  21. D.S. Duvall, W.A. Owczarski, D.F. Paulonis, Weld. J., 1974, 53, 203-214

    CAS  Google Scholar 

  22. L. Bernstein, J. Electrochem. Soc., 1966, 113, 1282-1288

    Article  CAS  Google Scholar 

  23. I. Tuah-Poku, M. Dollar, T.B. Massalski, Metall. Trans. A, 1988, 19A, 675-686

    Article  CAS  Google Scholar 

  24. G.O. Cook, C.D. Sorensen, J. Mater. Sc., 2011, 46, 5305-5323

    Article  CAS  Google Scholar 

  25. M. Schaefer, R.A. Fournelle, J. Liang, J. Electron. Mater., 1998, 27, 1167-1176

    Article  CAS  Google Scholar 

  26. B. Dimcic, R. Labie, J. De Messemaeker, K. Vanstreels, K. Croes, B. Verlinden, I. De Wolf, Microelectron. Reliab., 2012, 52, 1971-1974

    Article  CAS  Google Scholar 

  27. K.L. Erickson, P.L. Hopkins, P.T. Vianco, J. Electron. Mater., 1994, 23, 729-734

    Article  CAS  Google Scholar 

  28. P. Villars, L.D. Calvert, Pearson’s handbook of Crystallographic Data for intermetallic Phases (ASM, Metals Park, Ohio, 1985), pp. 2030

    Google Scholar 

  29. B. Alchagirov, A.M. Chochaeva, High Temp., 2000, 38, 44-48

    Article  CAS  Google Scholar 

  30. M. Raessi, J. Mostaghimi, Numer. Heat Tr. Part B, 2005, 47, 507-531

    Article  Google Scholar 

  31. J.A. Cahill, A.D. Kirshenbaum, J. Phys. Chem., 1962, 66, 1080-82

    Article  CAS  Google Scholar 

  32. M. Onishi, H. Fujibuchi, Trans. JIM, 1975, 16, 539-547

    Article  CAS  Google Scholar 

  33. J.F. Li, P.A. Agyakwa, C.M. Johnson, Intermetallics, 2013, 40, 50-59

    Article  Google Scholar 

  34. K. Hoshino, Y. Iijima, K. Hirano, Trans JIM, 1980, 21, 674-682

    Article  CAS  Google Scholar 

  35. C.H. Ma, R.A. Swalin, Acta Metall., 1960, 8, 388-395

    Article  CAS  Google Scholar 

  36. D. Prokoshkina, V.A. Esin, G. Wilde, S.V. Divinski, Acta Mater., 2013, 61, 5188-5197

    Article  CAS  Google Scholar 

  37. Y. Zhou, T.H. North, Acta Metall. Mater., 1994, 42, 1025-1029

    Article  CAS  Google Scholar 

  38. R. An, Y. Tian, R. Zhang, J. Mater. Sci.: Mater. Electron., 2015, 26, 2674-81

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Silvain.

Additional information

Manuscript submitted January 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordère, S., Feuillet, E., Diot, JL. et al. Understanding of Void Formation in Cu/Sn-Sn/Cu System During Transient Liquid Phase Bonding Process Through Diffusion Modeling. Metall Mater Trans B 49, 3343–3356 (2018). https://doi.org/10.1007/s11663-018-1391-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1391-8

Keywords

Navigation