Skip to main content
Log in

Effect of Iron Phase Evolution on Copper Separation from Slag Via Coal-Based Reduction

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Copper slag, a by-product of copper pyrometallurgy, inevitably contains a certain amount of copper. Oxygen-enriched smelting technologies increase the copper content in slag indirectly because of the production of higher-grade matte. The effect of iron phase evolution on the copper content in slag during the slag cleaning process in an electric furnace was investigated using the method of combining theory with experiments. Based on the analysis, the main factors that impede the separation of slag and copper/matte were determined. Subsequently, the properties of slag were analyzed after decreasing the magnetite content within the slag. The experimental results showed that decreases in magnetite content were beneficial for the separation of copper and slag because of the decrease of slag viscosity. Nevertheless, Cu-Fe alloys formed when magnetite was completely reduced to metallic iron, and the foaming slag was formed at 1250 °C. Furthermore, the distribution of copper in the reduced slags was studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. 1. I.F.F. Neto, C. A. Sousa, M.S.C.A. Brito, A. M. Futuro, and H.M.V.M. Soares, Sep. Purif. Technol, 2016, vol. 164, pp. 19–27.

    Article  CAS  Google Scholar 

  2. 2. B. Das, B.K. Mishra, S. Angadi, S.K. Pradhan, S. Prakash, and J. Mohanty, Waste Management & Research the Journal of the International Solid Wastes & Public Cleansing Association Iswa, 2010, vol. 28, pp. 561-567.

    Article  CAS  Google Scholar 

  3. M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport, Extractive Metallurgy of Copper 5th ed, Elsevier, Oxford, 2011.

    Chapter  Google Scholar 

  4. 4. R. Sridhar, J.M. Toguri, and S. Simeonov, Metall. Mater. Trans. B, 1997, vol. 28B, pp. 191-200.

    Article  CAS  Google Scholar 

  5. 5. R. Sharma, and R.A. Khan, J. Clean. Prod, 2017, vol. 151, pp. 179-192.

    Article  CAS  Google Scholar 

  6. 6. A. Rusen, A.Geveci, Y. A. Topkaya, and B. Derin, JOM, 2016, vol. 68, pp.2323-2331.

    Article  CAS  Google Scholar 

  7. Jones, M.J., Advances in extractive metallurgy and refining, IMM, London, 1972.

    Google Scholar 

  8. 8. P. Spira, N. J. Themelis, JOM. 1969, vol. 21, pp. 35-42.

    Article  CAS  Google Scholar 

  9. 9. J.C. Yannopoulos, Can. Metall. Q., 1971, vol. 10, pp. 291-307.

    Article  CAS  Google Scholar 

  10. 10. J.M. Toguri, N.J. Themelis, and P.H. Jennings, Can. Metall. Q., 1964, vol. 3, pp. 197-220.

    Article  CAS  Google Scholar 

  11. M.E. Schlesinger, M.J. King, A.W. Davenport, and K.C. Sole, Extractive Metallurgy of Copper, 5th ed. Elsevier, New York, 2011.

    Chapter  Google Scholar 

  12. 12. H. Jalkanen, J. Vehviläinen, and J. Poijärvi, Scand. J. Metall., 2003, vol. 32, pp. 65-70.

    Article  CAS  Google Scholar 

  13. 13. N. Cardona, P. Coursol, P. J. Mackey, and R. Parra, Can. Metall. Q., 2011, vol. 50, pp. 318-29.

    Article  CAS  Google Scholar 

  14. 14. M. Kucharski, Archiwum Hutnictwa, 1987, vol. 32, pp. 307-23.

    CAS  Google Scholar 

  15. 15. H.P. Rajcevic and W.R. Opie, JOM, 1982, vol. 34, pp. 54-56.

    Article  CAS  Google Scholar 

  16. A. Moreno, G. Sánchez, A. Warczok, and G. Riveros, Proc. Conf. Copper 2003, London, Metallurgical Societ of CIM, 2003, vol. IV, pp. 475–92.

  17. 17. A. Warczok, G. Riveros, P. Echeverrã, C.M. Díaz, H. Schwarze and G. Sánchez, Can. Metall. Q., 2013, vol. 41, pp. 465-473.

    Article  Google Scholar 

  18. V. Montenegro, T. Fujisawa, A. Warczok, and G. Riveros, Metallurgical and Materials Processing: Principles and Technologies, 2003, High-Temperature Metal Production, vol 2, pp. 199–09.

  19. A. Warczok, G. Riveros, and V. Montenegro, Proc. 5th Int. Conf. Copper 2003, Santiago, Chile, November 30–December 3, 2003, pp. 1–17.

  20. 20. A. Warczok, T. A. Utigard, Metall. Mater. Trans. B., 1995, vol. 26, pp. 1165-1173.

    Article  Google Scholar 

  21. 21. M. S. Bafghi, ISIJ Int., 2007, vol. 32, pp. 1084-1090.

    Article  Google Scholar 

  22. 22. A. Mitrašinović, JOM, 2017, vol. 69, pp. 1-6.

    Article  Google Scholar 

  23. 23. A. Warczok, T. A. Utigard, Can. Metall. Q., 2013, vol. 37, pp. 27-39.

    Article  Google Scholar 

  24. 24. J.H. Heo, Y, Chung, and J.H. Park, J. Clean. Prod., 2016, vol. 137, pp. 777-787.

    Article  CAS  Google Scholar 

  25. A.A. Lykasov, G.M. Ryss, D.G. Sharafutdinov, and A.Y. Pogodin, Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metall. 2016, vol. 59, pp. 597-607.

    Article  CAS  Google Scholar 

  26. 26. D. Busolic, F. Parada, R. Parra, M. Sanchez, J. Palacios, and M. Hino, Miner. Process. Extr. Metall., 2011, vol. 120, pp. 32-36.

    CAS  Google Scholar 

  27. 27. H.F. Yang, L.L. Jing, and C.G. Dang, Chin. J. Nonferrous. Met., 2011, vol. 21, pp. 1165-1170.

    CAS  Google Scholar 

  28. 28. R.W. Ruddle, The physical chemistry of copper smelting, IMM, London, 1953.

    Google Scholar 

  29. 29. C.P Liu, Nonferrous Metals: Extractive Metallurgy, 1975, vol. 8, pp. 36-45. (In Chinese)

    Google Scholar 

  30. L. Bodnar, S. Cempa, K. Tomasek, and L. Bobok, Chem. Pap. 1978, vol. 32(6), pp. 798–809.

  31. 31. J.O. Bockris, and D.C. Lowe, Proc. R. Soc. A., 1954, vol. 226, pp. 423-435.

    Article  CAS  Google Scholar 

  32. 32. G.H. Kaiura, J.M. Toguri, and G. Marchant, Can. Metall. Q., 2013, vol. 16, pp. 156-160.

    Article  Google Scholar 

  33. P. Taskinen, K. Seppã¤Lã¤, J. Laulumaa, and J. Poijã¤Rvi, Min. Proc. Ext. Met., 1997, vol. 110, pp. 94–100.

  34. 34. J. Matousek, JOM, 2012, vol. 64, pp. 1314-1320.

    Article  CAS  Google Scholar 

  35. 35. S.W. Ip, and J.M. Toguri, Metall. Trans. B., 1992, vol. 23, pp. 303-311.

    Article  Google Scholar 

  36. 36. P.K. Iwamasa, and R.J. Fruehan, ISIJ Int., 1996, vol. 36, pp. 1319-1327.

    Article  CAS  Google Scholar 

  37. 37. N. Cardona, P. Coursol, J. Vargas, and R. Parra, Can. Metall. Q., 2013, vol. 50, pp. 330-340.

    Article  Google Scholar 

  38. 38. S.A. Degterov, and A.D. Pelton, Metall. Mater. Trans. B., 1999, vol. 30B, pp. 1033-1044.

    Article  CAS  Google Scholar 

  39. 39. D.C. Lynch, S. Akagi, and W.G. Davenport, Metall. Trans. B., 1991, vol. 22, pp. 677-688.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1602272 and 51664039) and the Analysis and Testing Foundation of Kunming University of Science and Technology (2017P20161102004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonggang Wei or Hua Wang.

Additional information

Manuscript submitted March 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Wei, Y., Li, B. et al. Effect of Iron Phase Evolution on Copper Separation from Slag Via Coal-Based Reduction. Metall Mater Trans B 49, 3086–3096 (2018). https://doi.org/10.1007/s11663-018-1379-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1379-4

Keywords

Navigation