Skip to main content
Log in

Dephosphorization of Levitated Silicon-Iron Droplets for Production of Solar-Grade Silicon

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The treatment of relatively inexpensive silicon-iron alloys is a potential refining route in order to generate solar-grade silicon. Phosphorus is one of the more difficult impurity elements to remove by conventional processing. In this study, electromagnetic levitation was used to investigate phosphorus behavior in silicon-iron alloy droplets exposed to H2-Ar gas mixtures under various experimental conditions including, refining time, temperature (1723 K to 1993 K), gas flow rate, iron content, and initial phosphorus concentration in the alloy. Thermodynamic modeling of the dephosphorization reaction permitted prediction of the various gaseous products and indicated that diatomic phosphorus is the dominant species formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Bye, B. Ceccaroli: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 634-646.

    Article  Google Scholar 

  2. Price quotes updated weekly—PV spot prices. (EnergyTrend PV of Trendforce Corp., Taipei, 2017). http://pv.energytrend.com/pricequotes.html. Accessed 29 November 2017.

  3. D. Lynch: JOM, 2009, vol. 61, pp. 41-48.

    Article  Google Scholar 

  4. M. D. Johnston, L.T. Khajavi, M. Li, S. Sokhanvaran, M. Barati: JOM, 2012, vol. 64, pp. 935-945.

    Article  Google Scholar 

  5. S.S. Zheng, W.H. Chen, J. Cai, J.T. Li, C. Chen, X.T. Luo: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1268-1273.

    Article  Google Scholar 

  6. T. Kemmotsu, T. Nagai, M. Maeda : High Temp. Mater. Proc., 2011, vol. 30, pp. 17-22.

    Article  Google Scholar 

  7. J. Safarian and M. Tangstad: High Temp. Mater. Proc., 2012, vol. 31, pp.73-81.

    Article  Google Scholar 

  8. Y. Tan, X. Guo, S. Shi, W. Dong, D. Jiang: Vacuum, 2013, vol. 93, pp. 65–70.

    Article  Google Scholar 

  9. L.T. Khajavi, M. Barati: Metall. Mater. Trans. B, 2017, vol. 48, pp.268-275.

    Article  Google Scholar 

  10. M. Popa: Nonconv. Technol. Rev., 2010, vol. 1, pp. 34-38.

    Google Scholar 

  11. Z. Royer: Optimizing electromagnetic levitation design to enhance thermodynamic measurement, Ph.D. Thesis, Iowa State University, Ames, IA, 2012, pp. 5–6.

  12. H. Momokawa, N. Sano: Metall. Mater. Trans. B, 1982, vol. 13B, pp.643-644.

    Article  Google Scholar 

  13. S. Ueda, K. Morita, N. Sano: Metall. Mater. Trans. B, 1997, vol. 28, pp. 1151-1155.

    Article  Google Scholar 

  14. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed., Oxford, Pergamon Press, 1979.

    Google Scholar 

  15. B.V. Patil, A.H. Chan, R.J. Choulet: The Making, Shaping and Treating of Steel: Chapter 12 Refining of Stainless Steels, 11th ed., The AISE Steel Foundation, Pittsburgh, PA, 1998, pp. 721-726.

    Google Scholar 

  16. Mitsutaka Hino, Kimihisa Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010, p.260.

    Google Scholar 

  17. P.R. Gaines: ICP Operations Guide, Inorganic Ventures™, Christiansburg, 2011.

  18. M. Duffy, R. Thomas: At. Spectrosc., 1996, vol. 17, pp.128-132.

    Google Scholar 

  19. W. Yan, Y. Yang, W. Chen, M. Barati, A. McLean: Vacuum, 2017, vol. 135, pp. 101-108.

    Article  Google Scholar 

  20. L.T. Khajavi, M. Barati: High Temp. Mater. Proc., 2012, vol. 31, pp. 627-631.

    Article  Google Scholar 

  21. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A. Van Ende: Calphad, 2016, vol. 54, pp. 35-53.

    Article  Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to the Natural Sciences and Engineering Research Council of Canada for providing project funding through a Strategic Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Le.

Additional information

Manuscript submitted August 22, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, K., Yang, Y., Barati, M. et al. Dephosphorization of Levitated Silicon-Iron Droplets for Production of Solar-Grade Silicon. Metall Mater Trans B 49, 1658–1664 (2018). https://doi.org/10.1007/s11663-018-1282-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1282-z

Keywords

Navigation