Skip to main content

Advertisement

Log in

Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

  • Topical Collection: Advances in Materials Manufacturing and Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β-Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10−9 s−1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.J. Li, A.M.F. Muggerud, A. Olsen, and T. Furu: Acta Mater., 2012, vol. 60, pp. 1004–14.

    Article  Google Scholar 

  2. K. Liu and X.G. Chen: Mater. Des., 2015, vol. 84, pp. 340–50.

    Article  Google Scholar 

  3. K. Liu and X.G. Chen: Metall. Mater. Trans. B, 2015, vol. 47B, pp. 3291–3300.

    Google Scholar 

  4. Y.J. Li and L. Arnberg: Acta Mater., 2003, vol. 51, pp. 3415–28.

    Article  Google Scholar 

  5. R. Kamat: JOM, 1996, vol. 48, pp. 34–38.

    Article  Google Scholar 

  6. Q. Du, W.J. Poole, M.A. Wells, and N.C. Parson: Acta Mater., 2013, vol. 61, pp. 4961–73.

    Article  Google Scholar 

  7. K. Liu, H. Ma, and X.G. Chen: J. Alloys Compd., 2017, vol. 694, pp. 354–65.

    Article  Google Scholar 

  8. K. Liu and X.-G. Chen: J. Mater. Res., 2017, vol. 32, pp. 2585–93.

    Article  Google Scholar 

  9. K. Liu, A.M. Nabawy, and X.-G. Chen: Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 771–78.

    Article  Google Scholar 

  10. H.-W. Huang and B.-L. Ou: Mater. Des., 2009, vol. 30, pp. 2685–92.

    Article  Google Scholar 

  11. A.M.F. Muggerud, E.A. Mørtsell, Y. Li, and R. Holmestad: Mater. Sci. Eng., A, 2013, vol. 567, pp. 21–28.

    Article  Google Scholar 

  12. Y. Li and L. Arnberg (2013) Essential Readings in Light Metal. Wiley, Hoboken, NJ, pp. 1021–27

    Book  Google Scholar 

  13. K. Liu and X.G. Chen: Mater. Sci. Eng. A, 2017, vol. 697, pp. 141–48.

    Article  Google Scholar 

  14. Y.-L. Deng, Y.-Y. Zhang, L. Wan, A. Zhu, and X.-M. Zhang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2470–77.

    Article  Google Scholar 

  15. Z. Guo, G. Zhao, and X.G. Chen: Mater. Charact., 2015, vol. 102, pp. 122–30.

    Article  Google Scholar 

  16. Z. Jia, G. Hu, B. Forbord, and J. K. Solberg: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 195–98.

    Article  Google Scholar 

  17. X.-Y. Lü, E.-J. Guo, P. Rometsch, and L.-J. Wang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2645–51.

    Article  Google Scholar 

  18. J.D. Robson: Mater. Sci. Eng. A, 2002, vol. 338, pp. 219–29.

    Article  Google Scholar 

  19. P. X. Liu, Y. Liu, and R. Xu: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2443–51.

    Google Scholar 

  20. E.R. Weibel and H. Elias: Quantitative Methods in Morphology, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  21. A.R. Farkoosh, X. Grant Chen, and M. Pekguleryuz: Mater. Sci. Eng., A, 2015, vol. 620, pp. 181–89.

    Article  Google Scholar 

  22. L. Lodgaard and N. Ryum: Mater. Sci. Eng., A, 2000, vol. 283, pp. 144–52.

    Article  Google Scholar 

  23. J. Osten, B. Milkereit, C. Schick, and O. Kessler: Materials, 2015, vol. 8, pp. 2830–48.

    Article  Google Scholar 

  24. Y. Ohmori, L.C. Doan, and K. Nakai: Mater. Trans., 2002, vol. 43, pp. 246–55.

    Article  Google Scholar 

  25. A. Gaber, M.A. Gaffar, M.S. Mostafa, and A.F. Abo Zeid: Mater. Sci. Technol., 2006, vol. 22, pp. 1483–88.

    Article  Google Scholar 

  26. L.C. Doan, K. Nakai, Y. Matsuura, S. Kobayashi, et al.: Mater. Trans., 2002, vol. 43, pp. 1371–80.

    Article  Google Scholar 

  27. Y. Birol: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1875–81.

    Article  Google Scholar 

  28. J.G. Kaufman: Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures; Aluminum Association, Washington, DC, 1999.

    Google Scholar 

  29. C. Booth-Morrison, D.C. Dunand, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 7029–42.

    Article  Google Scholar 

  30. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 114–27.

    Article  Google Scholar 

  31. X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang, et al.: Mater. Des., 2015, vol. 77, pp. 41–49.

    Article  Google Scholar 

  32. T. Wang, C. Wang, W. Sun, X. Qin, J. Guo, and L. Zhou: Mater. Des., 2014, vol. 62, pp. 225–32.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Liu.

Additional information

Manuscript submitted August 16, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Ma, H. & Chen, X.G. Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys. Metall Mater Trans B 49, 1588–1596 (2018). https://doi.org/10.1007/s11663-018-1268-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1268-x

Keywords

Navigation