Skip to main content
Log in

Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Baoji Yuanheng Metals products Co., Ltd., Baoji, Shaanxi Province, P.R. China.

References

  1. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Article  Google Scholar 

  2. J. Banhart: Adv. Eng. Mater., 2013, vol. 15, pp. 82–111.

    Article  Google Scholar 

  3. L.-P. Lefebvre, J. Banhart, and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775–87.

    Article  Google Scholar 

  4. G.J. Davies and S. Zhen: J. Mater. Sci., 1983, vol. 18, pp. 1899–1911.

    Article  Google Scholar 

  5. J. Banhart: Adv. Eng. Mater., 2006, vol. 8, pp. 781–94.

    Article  Google Scholar 

  6. D. Leitlmeier, H.P. Degischer, and H.J. Flankl: Adv. Eng. Mater., 2002, vol. 4, pp. 735–40.

    Article  Google Scholar 

  7. N. Movahedi, S.M.H. Mirbagheri, and S.R. Hoseini: Met. Mater. Int., 2014, vol. 20, pp. 757–63.

    Article  Google Scholar 

  8. C-J Yu, HH Eifert, J Banhart, and J. Baumeister: Mater. Res. Innovat., 1998, vol. 2, pp. 181–88.

    Article  Google Scholar 

  9. W.W. Yuan, X. Chen, Y. Liu, and Y.X. Li: Rare Met. Mater. Eng., 2009, vol. 38, pp. 306–10.

    Google Scholar 

  10. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara: Adv. Eng. Mater., 2000, vol. 2, pp. 1039–53.

    Article  Google Scholar 

  11. Y.X. Li: Spec. Cast. Nonferrous Alloys, 2011, vol. 31, pp. 1097–99.

    Google Scholar 

  12. C.C. Yang and H. Nakae: J. Alloys Compd., 2000, vol. 313, pp. 188–91.

    Article  Google Scholar 

  13. C.C. Yang and H. Nakae: J. Mater. Process. Technol., 2003, vol. 141, pp. 202–06.

    Article  Google Scholar 

  14. Z. Sarajan and M. Sedigh: Mater. Manuf. Processes, 2009, vol. 24, pp. 590–93.

    Article  Google Scholar 

  15. Y. Zou, D.P. He, and J.Q. Jiang: Sci. Chin. B, 2004, vol. 47, pp. 407–13.

    Article  Google Scholar 

  16. N. Babcsan, S. Beke, P. Makk, G. Szamel, and C. Kadar: Procedia Mater. Sci., 2014, vol. 4, pp. 127–32.

    Article  Google Scholar 

  17. N. Babcsan, S. Beke, G. Szamel, T. Borzsonyi, B. Szabo, R. Mokso, C. Kadar, and J.B. Kiss: Proc. Mater. Sci., 2014, vol. 4, pp. 69–74.

    Article  Google Scholar 

  18. J. Hartmann, A. Trepper, and C. Körner: Adv. Eng. Mater., 2011, vol. 13, pp. 1050–55.

    Article  Google Scholar 

  19. J. Hartmann, C. Blümel, S. Ernst, T. Fiegl, K.-E. Wirth, and C. Körner: J. Mater. Sci., 2014, vol. 49, pp. 79–87.

    Article  Google Scholar 

  20. T.J. Lu and C. Chen: Acta Mater., 1999, vol. 47, pp. 1469–85.

    Article  Google Scholar 

  21. Ying Cheng, Yanxiang Li, Xiang Chen, Tong Shi, Zhiyong Liu, and Ningzhen Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 754–62.

    Article  Google Scholar 

  22. C. Kӧrner: Integral Foam Molding of Light Metals—Technology, Foam Physics and Foam Simulation, Springer, Berlin, 2008, pp. 63–64.

    Google Scholar 

  23. Donghui Yang, Jianqing Chen, Hui Wang, Jinghua Jiang, Aibin Ma, and Z.P. Lu: J. Mater. Sci. Technol., 2015, vol. 31, pp. 361–68.

    Article  Google Scholar 

  24. A.R. Kennedy and V.H. Lopez: Mater. Sci. Eng., A, 2003, vol. 357, pp. 258–63.

    Article  Google Scholar 

  25. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart: Acta Mater., 2011, vol. 59, pp. 6318–30.

    Article  Google Scholar 

  26. B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka: Acta Mater., 2006, vol. 54, pp. 1887–1900.

    Article  Google Scholar 

  27. V. Bhosle, E.G. Baburaj, M. Miranova, and K. Salama: Mater. Sci. Eng., A, 2003, vol. 356, pp. 190–99.

    Article  Google Scholar 

  28. H. Liu, P. He, J.C. Feng, and J. Cao: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 3018–25.

    Article  Google Scholar 

  29. A.R. Kennedy: Scripta Mater., 2002, vol. 47, pp. 763–67.

    Article  Google Scholar 

  30. C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart: Scripta Mater., 2012, vol. 66, pp. 757–60.

    Article  Google Scholar 

  31. Hong-Jie Luo, Hao Lin, Pei-Hong Chen, and Guang-Chun Yao: Rare Met., 2015, vol. 34, pp. 28–33.

    Article  Google Scholar 

  32. Cao Jie-yi, Xiao Ping-an, Dai Kun-liang, Li Chen-kun, and Zhang Xia: Chin. J. Nonferrous Met., 2014, vol. 24, pp. 733–38.

    Google Scholar 

  33. T. Ozawa: Bull. Chem. Soc. Jpn., 1965, vol. 38, pp. 1881–86.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation (Grant No. 51371104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Li.

Additional information

Manuscript submitted July 31, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, Y., Chen, X. et al. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size. Metall Mater Trans B 49, 1014–1021 (2018). https://doi.org/10.1007/s11663-018-1240-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1240-9

Keywords

Navigation