Metallurgical and Materials Transactions B

, Volume 49, Issue 3, pp 1014–1021 | Cite as

Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

  • Ying Cheng
  • Yanxiang Li
  • Xiang Chen
  • Zhiyong Liu
  • Xu Zhou
  • Ningzhen Wang
Article
  • 52 Downloads

Abstract

Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation (Grant No. 51371104).

References

  1. 1.
    J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.CrossRefGoogle Scholar
  2. 2.
    J. Banhart: Adv. Eng. Mater., 2013, vol. 15, pp. 82–111.CrossRefGoogle Scholar
  3. 3.
    L.-P. Lefebvre, J. Banhart, and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775–87.CrossRefGoogle Scholar
  4. 4.
    G.J. Davies and S. Zhen: J. Mater. Sci., 1983, vol. 18, pp. 1899–1911.CrossRefGoogle Scholar
  5. 5.
    J. Banhart: Adv. Eng. Mater., 2006, vol. 8, pp. 781–94.CrossRefGoogle Scholar
  6. 6.
    D. Leitlmeier, H.P. Degischer, and H.J. Flankl: Adv. Eng. Mater., 2002, vol. 4, pp. 735–40.CrossRefGoogle Scholar
  7. 7.
    N. Movahedi, S.M.H. Mirbagheri, and S.R. Hoseini: Met. Mater. Int., 2014, vol. 20, pp. 757–63.CrossRefGoogle Scholar
  8. 8.
    C-J Yu, HH Eifert, J Banhart, and J. Baumeister: Mater. Res. Innovat., 1998, vol. 2, pp. 181–88.CrossRefGoogle Scholar
  9. 9.
    W.W. Yuan, X. Chen, Y. Liu, and Y.X. Li: Rare Met. Mater. Eng., 2009, vol. 38, pp. 306–10.Google Scholar
  10. 10.
    T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara: Adv. Eng. Mater., 2000, vol. 2, pp. 1039–53.CrossRefGoogle Scholar
  11. 11.
    Y.X. Li: Spec. Cast. Nonferrous Alloys, 2011, vol. 31, pp. 1097–99.Google Scholar
  12. 12.
    C.C. Yang and H. Nakae: J. Alloys Compd., 2000, vol. 313, pp. 188–91.CrossRefGoogle Scholar
  13. 13.
    C.C. Yang and H. Nakae: J. Mater. Process. Technol., 2003, vol. 141, pp. 202–06.CrossRefGoogle Scholar
  14. 14.
    Z. Sarajan and M. Sedigh: Mater. Manuf. Processes, 2009, vol. 24, pp. 590–93.CrossRefGoogle Scholar
  15. 15.
    Y. Zou, D.P. He, and J.Q. Jiang: Sci. Chin. B, 2004, vol. 47, pp. 407–13.CrossRefGoogle Scholar
  16. 16.
    N. Babcsan, S. Beke, P. Makk, G. Szamel, and C. Kadar: Procedia Mater. Sci., 2014, vol. 4, pp. 127–32.CrossRefGoogle Scholar
  17. 17.
    N. Babcsan, S. Beke, G. Szamel, T. Borzsonyi, B. Szabo, R. Mokso, C. Kadar, and J.B. Kiss: Proc. Mater. Sci., 2014, vol. 4, pp. 69–74.CrossRefGoogle Scholar
  18. 18.
    J. Hartmann, A. Trepper, and C. Körner: Adv. Eng. Mater., 2011, vol. 13, pp. 1050–55.CrossRefGoogle Scholar
  19. 19.
    J. Hartmann, C. Blümel, S. Ernst, T. Fiegl, K.-E. Wirth, and C. Körner: J. Mater. Sci., 2014, vol. 49, pp. 79–87.CrossRefGoogle Scholar
  20. 20.
    T.J. Lu and C. Chen: Acta Mater., 1999, vol. 47, pp. 1469–85.CrossRefGoogle Scholar
  21. 21.
    Ying Cheng, Yanxiang Li, Xiang Chen, Tong Shi, Zhiyong Liu, and Ningzhen Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 754–62.CrossRefGoogle Scholar
  22. 22.
    C. Kӧrner: Integral Foam Molding of Light Metals—Technology, Foam Physics and Foam Simulation, Springer, Berlin, 2008, pp. 63–64.Google Scholar
  23. 23.
    Donghui Yang, Jianqing Chen, Hui Wang, Jinghua Jiang, Aibin Ma, and Z.P. Lu: J. Mater. Sci. Technol., 2015, vol. 31, pp. 361–68.CrossRefGoogle Scholar
  24. 24.
    A.R. Kennedy and V.H. Lopez: Mater. Sci. Eng., A, 2003, vol. 357, pp. 258–63.CrossRefGoogle Scholar
  25. 25.
    C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, and J. Banhart: Acta Mater., 2011, vol. 59, pp. 6318–30.CrossRefGoogle Scholar
  26. 26.
    B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, and N. Wanderka: Acta Mater., 2006, vol. 54, pp. 1887–1900.CrossRefGoogle Scholar
  27. 27.
    V. Bhosle, E.G. Baburaj, M. Miranova, and K. Salama: Mater. Sci. Eng., A, 2003, vol. 356, pp. 190–99.CrossRefGoogle Scholar
  28. 28.
    H. Liu, P. He, J.C. Feng, and J. Cao: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 3018–25.CrossRefGoogle Scholar
  29. 29.
    A.R. Kennedy: Scripta Mater., 2002, vol. 47, pp. 763–67.CrossRefGoogle Scholar
  30. 30.
    C. Jiménez, F. Garcia-Moreno, A. Rack, R. Tucoulou, M. Klaus, B. Pfretzschner, T. Rack, P. Cloetens, and J. Banhart: Scripta Mater., 2012, vol. 66, pp. 757–60.CrossRefGoogle Scholar
  31. 31.
    Hong-Jie Luo, Hao Lin, Pei-Hong Chen, and Guang-Chun Yao: Rare Met., 2015, vol. 34, pp. 28–33.CrossRefGoogle Scholar
  32. 32.
    Cao Jie-yi, Xiao Ping-an, Dai Kun-liang, Li Chen-kun, and Zhang Xia: Chin. J. Nonferrous Met., 2014, vol. 24, pp. 733–38.Google Scholar
  33. 33.
    T. Ozawa: Bull. Chem. Soc. Jpn., 1965, vol. 38, pp. 1881–86.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Ying Cheng
    • 1
  • Yanxiang Li
    • 1
    • 2
  • Xiang Chen
    • 1
    • 2
  • Zhiyong Liu
    • 1
  • Xu Zhou
    • 1
  • Ningzhen Wang
    • 1
  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingP. R. China
  2. 2.Key Laboratory for Advanced Materials Processing TechnologyMOEBeijingP. R. China

Personalised recommendations