Skip to main content
Log in

Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting–Leaching

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting–leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. R. Moskalyk and A. M. Alfantazi: Miner. Eng., 2003, vol. 16, pp. 793–805.

    Article  Google Scholar 

  2. P. C. Hu, Y. M. Zhang, T. Liu, J. Huang, Y. Z. Yuan and Y. D. Yang: Sep. Purif. Technol., 2017, vol. 180, pp. 99–106.

    Article  Google Scholar 

  3. S. A. Katz and H. Salem: J. Appl. Toxicol., 1993, vol. 13 (3), pp. 217–24.

    Article  Google Scholar 

  4. S. M. J. Mirazimi, F. Rashchi and M. Saba: Sep. Purif. Technol., 2013, vol. 116, pp. 175–83.

    Article  Google Scholar 

  5. P. Miretzky and A. F. Cirelli: J. Hazard. Mater., 2010, vol. 180, pp. 1–19.

    Article  Google Scholar 

  6. B. Dhal, H. N. Thatoi, N. N. Das and B. D. Pandey: J. Hazard. Mater., 2013, vol. 250–251, pp. 272–91.

    Article  Google Scholar 

  7. J. H. Zhang, W. Zhang, L. Zhang and S. Q. Gu: Int. J. Miner. Process., 2015, vol. 138, pp. 20–29.

    Article  Google Scholar 

  8. X. S. Li, B. Xie, G. E. Wang and X. J. Li: Trans. Nonferrous Met. Soc. China., 2011, vol. 21, pp. 1860–67.

    Article  Google Scholar 

  9. H. G. Wang, M. Y. Wang and X. W. Wang: Miner. Process. Extr. Metall. Rev., 2015, vol. 124 (3), pp. 127–31.

    Article  Google Scholar 

  10. K. Yang, X. Zhang, X. Tian, Y. Yang and Y. Chen: Hydrometallurgy. 2010, vol. 103 (1–4), pp. 7–11.

    Article  Google Scholar 

  11. P. Sun, K. Huang and H. Z. Liu: Hydrometallurgy. 2016, vol. 165, pp. 370–80.

    Article  Google Scholar 

  12. D. D. Jiang, N. Z. Song, S. F. Liao, Y. Lian, J. T. Ma and Q. Jia: Sep. Purif. Technol., 2015, vol. 156, pp. 835–40.

    Article  Google Scholar 

  13. P. G. Ning, X. Lin, H. B. Cao and Y. Zhang: Sep. Purif. Technol., 2014, vol. 137, pp. 109–15.

    Article  Google Scholar 

  14. P. Sun, K. Huang, X. Q. Wang, W. Y. Song, H. Zheng and H. Z. Liu: Sep. Purif. Technol., 2017, vol. 179, pp. 504–12.

    Article  Google Scholar 

  15. Q. Y. Hu, J. M. Zhao, F. C. Wang, F. Huo and H. Z. Liu: Sep. Purif. Technol., 2014, vol. 131, pp. 94–101.

    Article  Google Scholar 

  16. X.-P. Liao, W. Tang, R.-Q. Zhou and B. Shi: Adsorption. 2007, vol. 14 (1), pp. 55–64.

    Article  Google Scholar 

  17. W. Li, Y. M. Zhang, J. Huang, X. B. Zhu and Y. Wang: Sep. Purif. Technol., 2012, vol. 96, pp. 44–49.

    Article  Google Scholar 

  18. Q. H. Shi, Y. M. Zhang, J. Huang, T. Liu, H. Liu and L. Y. Wang: Sep. Purif. Technol., 2017, vol. 181, pp. 1–7.

    Article  Google Scholar 

  19. X. Yang, Y. M. Zhang, S. X. Bao and C. Shen: Sep. Purif. Technol., 2016, vol. 164, pp. 49–55.

    Article  Google Scholar 

  20. J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: ISIJ Int., 2017, vol. 57 (6), pp. 970–77.

    Article  Google Scholar 

  21. J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: J Hazard Mater. 2017, vol. 336, pp. 1–7.

    Article  Google Scholar 

  22. J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: J. Clean. Prod., 2018, vol. 170, pp. 1089–101.

    Article  Google Scholar 

  23. J. Y. Xiang, Q. Y. Huang, X. W. Lv and C. G. Bai: Metall. Mater. Trans. B., 2017, vol. 48 (5), pp. 2759–67.

    Article  Google Scholar 

  24. X. S. Li and B. Xie: Int. J. Miner. Metall. Mater., 2012, vol. 19 (7), pp. 595–601.

    Article  Google Scholar 

  25. H. Y. Li, H. X. Fang, K. Wang, W. Zhou, Z. Yang, X. M. Yan, W. S. Ge, Q. W. Li and B. Xie: Hydrometallurgy. 2015, vol. 156, pp. 124–35.

    Article  Google Scholar 

  26. M. Li, L. Xiao, J. J. Liu, Z. X. Shi, Z. B. Fu, Y. Peng, P. Z. Long and Y. J. Yang: Mater. Sci. Forum., 2016, vol. 863, pp. 144–48.

    Article  Google Scholar 

  27. X. F. Zhang, F. G. Liu, X. X. Xue and T. Jiang: J. Alloy. Comp., 2016, vol. 686, pp. 356–65.

    Article  Google Scholar 

  28. X. S. Li, Doctor’s Thesis, Chongqing University, 2011, pp. 59–75.

  29. J. H. Zhang, Doctor’s Thesis, Northeastern University, 2014, pp. 45–61.

  30. L. Wen: The Infrared Spectroscopy of Minerals, Chongqing University Press, Chongqing, 1989, pp. 28–52.

    Google Scholar 

  31. V. C. Farmer: The Infrared Spectra of Minerals, Science Press, Beijing, 1982, pp. 146–49.

    Google Scholar 

  32. N. V. Chukanov: Infrared Spectra of Mineral Species, Springer, New York, 2014, pp. 1023–572.

    Book  Google Scholar 

  33. N. R. Yang and W. H. Yue: The Handbook of Inorganic Matalloid Materials Atlas, Wuhan University of Technology Press, Wuhan, 2000, pp. 87–89.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Programs of the National Natural Science Foundation of China (Nos. 51574082 and 51374052), the National Basic Research Program of China (973 Program) (No. 2013CB632603), the Fundamental Funds for the central universities (Nos. 150202001), and the National Natural Science Foundation of China and Yunnan Provincial Government (No. U15022273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Additional information

Manuscript submitted September 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Jiang, T., Xu, Y. et al. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting–Leaching. Metall Mater Trans B 49, 1471–1481 (2018). https://doi.org/10.1007/s11663-018-1197-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1197-8

Keywords

Navigation