Skip to main content
Log in

A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ε0.4. A simple expression involving ε, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. R. Sánchez-Pérez, R.D. Morales, L. García-Demedices, J. Palafox-Ramos, and M. Díaz-Cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 85–99.

    Article  Google Scholar 

  2. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, and J. Lucas: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1994, vol. 77, pp. 381–88.

  3. H. Yamamura, Y. Mizukami, and K. Misawa: ISIJ Int., 1996, vol. 36, pp. S223–S226.

    Article  Google Scholar 

  4. H. Esaka, Y. Kuroda, K. Shinozuka, and M. Tamura: ISIJ Int., 2004, vol. 44, pp. 682–90.

    Article  Google Scholar 

  5. Z. Wang, K. Mukai, and I. Jae Lee: ISIJ Int., 1999, vol. 39, pp. 553–62.

    Article  Google Scholar 

  6. G. Kaptay and K.K. Kelemen: ISIJ Int., 2001, vol. 41, pp. 305–07.

    Article  Google Scholar 

  7. J. Sengupta, Brian G. Thomas, Ho-Jung Shin, and Seon-Hyo Kim: AISTech 2006 Proc., vol. 1, pp. 903–14.

    Google Scholar 

  8. W.H. Emling and T.A. Waugaman: Steelmaking Conf. Proc., ISS, Warrendale, PA, 1994, vol. 77, pp. 371–79.

  9. Y. Mizuno and M. Iguchi: ISIJ Int., 2001, vol. 41 (Suppl.), pp. S56–S60.

  10. T. Szirtes: Applied Dimensional Analysis and Modeling, McGraw-Hill Book Company, New York, NY, 1997, pp. 1–787.

    Google Scholar 

  11. M. Iguchi, H. Ueda, and T. Uemura: Int. J. Multiphase Flows, 1995, vol. 21, pp. 861–73.

    Article  Google Scholar 

  12. H. Bai and Brian G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.

    Article  Google Scholar 

  13. H. Bai and Brian G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269–84.

    Article  Google Scholar 

  14. Z. Liu, B. Li, and M. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675–97.

    Article  Google Scholar 

  15. Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548–55.

    Article  Google Scholar 

  16. E. Torres-Alonso, R.D. Morales, S. Garcia-Hernández, and J. Palafox-Ramos: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 598–97.

    Google Scholar 

  17. E. Torres-Alonso, R.D. Morales, and S. Garcia-Hernández: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 675–90.

    Article  Google Scholar 

  18. Z. Liu, L. Li, F. Qi, B. Li, M. Jiang, and F. Tsukihashi: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 406–20.

    Article  Google Scholar 

  19. I. Calderón-Ramos and R.D. Morales: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1314–25.

    Article  Google Scholar 

  20. I. Calderón-Ramos, R.D. Morales, and María Salazar-Campoy: Steel Res. Int., 2016, vol. 87, pp. 1154–67.

    Article  Google Scholar 

  21. José DeJBarreto, R.D. Morales, S. García‐Hernández, A. Nájera‐Bastida, and I. Calderón‐Ramos: Steel Res. Int., 2015, vol. 86, pp. 517–27

    Article  Google Scholar 

  22. S. García-Hernández, J. de J. Barreto, R.D. Morales, and H. Arcos-Gutiérrez: ISIJ Int., 2013, vol. 53, pp. 809–17.

  23. R. Sánchez-Pérez, R.D. Morales, M. Díaz-Cruz, O. Olivares-Xometl, and J. Palafox-Ramos: ISIJ Int., 2003, vol. 43, pp. 637–46.

    Article  Google Scholar 

  24. M. Iguchi and O.J. Ilegbusi: Modeling Multiphase Materials Processes, 1st ed., Springer Science+Business Media, LLC, New York, NY, 2011, pp. 95–174.

    Book  Google Scholar 

  25. J.C. Delgado-Pureco: Arcelor Mittal Steel, Lázaro Cárdenas, Michoacán.

  26. ImageJ-1.49 (Image Processing and Analysis in Java): http://imagej.nih.gov/ij/index.html. Accessed 10 Dec 2015.

  27. C. Crowe, M. Sommerfeld, and Y. Tsuji: Multiphase Flows with Droplets and Particles, 1st ed., CRC Press LLC, New York, NY, 1998, pp. 40–44.

    Google Scholar 

  28. M. Iguchi and N. Kasai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60.

    Article  Google Scholar 

  29. D.C. Wilcox: Turbulence Models for CFD, La Cañada Flintridge, CA, 2000, pp. 10–13.

    Google Scholar 

  30. C. Martinez-Bazán: Ph.D. Thesis, University of California at San Diego, San Diego, 1998.

  31. G.M. Evans, G.D. Rigby, T.A. Honeyands, and Q.L. He: Chem. Eng. Sci., 1999, vol. 54, pp. 4861–67.

    Article  Google Scholar 

  32. F. Oeters: Metallurgy of Steelmaking, Stahl und Eisen, Berlin, 1989, pp. 167–80.

    Google Scholar 

  33. E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, London, 1996, pp. 125–36.

    Google Scholar 

  34. A. Ghosh: Secondary Steelmaking, CRC Press, London, 2001, pp. 225–52.

    Google Scholar 

  35. R. Clift, J.R. Grace, and M.E. Weber: Bubbles, Drops and Particles, Academic Press, New York, NY, 1978, pp. 26–29 and 172.

  36. Z. Wang, K. Mukai, Z. Ma, M. Nishi, H. Tsukamoto, and Feng Shi: ISIJ Int., 1999, vol. 39, pp. 795–803.

    Article  Google Scholar 

  37. E. Sven, K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, and P. Gardin: Experimental Investigation of Liquid Metal Two-Phase Flows in a Continuous Casting Model, 8th ECCC, 2015.

  38. K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2015, vol. 36B, pp. 700–10

    Article  Google Scholar 

  39. R. Chaudhary, C. Ji, and B.G. Thomas: CCC Report No. 201013, Aug. 12, 2010.

  40. S. Uno and R.C. Kitner: AIChE J., 1956, pp. 420–25.

Download references

Acknowledgments

The authors thank the National Council of Science and Technology and the program IPN-PIFI for grant scholarships to MMSC. RDM thanks IPN and SNI for their support of his research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María M. Salazar-Campoy.

Additional information

Manuscript submitted January 27, 2016.

Appendix A

Appendix A

Equation [1A] in text is rewritten here:

$$ {\text{C}} = - {\text{D}}\left( {{\text{A}}^{ - 1} {\text{B}}} \right)^{\text{T}} + \left( {{\text{A}}^{ - 1} q} \right)^{\text{T}} . $$
(1A)

As an example, the square, 3 × 3 matrix A is located in the right corner of the subsequent general matrix. The 3 × 1 matrix in the left corner is B. The C matrix is built by 1 × 3 elements and is located just below matrix A. Finally, the D matrix with 1 × 1 elements (called the identity matrix) is that located just below matrix B. Matrices A and B constitute the complete dimensional matrix, whereas matrixes C and D constitute the matrix of dimensionless numbers, as shown in Figure A1.

Fig. A1
figure 26

Dimensional matrix

The variables used to build the dimensional matrix were the following: Db is the bubble diameter (m), σm-s is the surface tension metal (kg/s2), ρm is the metal density (kg/m3), ε is the dissipation of kinetic energy (m2/s3), \( \pi_{1} \) is a constant number equal to 1.26.[26]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Campoy, M.M., Morales, R.D., Nájera-Bastida, A. et al. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels. Metall Mater Trans B 49, 812–830 (2018). https://doi.org/10.1007/s11663-018-1181-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1181-3

Keywords

Navigation